使用依赖图节点集群的无监督文档摘要

Ayman El-Kilany, Iman Saleh
{"title":"使用依赖图节点集群的无监督文档摘要","authors":"Ayman El-Kilany, Iman Saleh","doi":"10.1109/ISDA.2012.6416598","DOIUrl":null,"url":null,"abstract":"In this paper, we investigate the problem of extractive single document summarization. We propose an unsupervised summarization method that is based on extracting and scoring keywords in a document and using them to find the sentences that best represent its content. Keywords are extracted and scored using clustering and dependency graphs of sentences. We test our method using different corpora including news, events and email corpora. We evaluate our method in the context of news summarization and email summarization tasks and compare the results with previously published ones.","PeriodicalId":370150,"journal":{"name":"2012 12th International Conference on Intelligent Systems Design and Applications (ISDA)","volume":"74 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":"{\"title\":\"Unsupervised document summarization using clusters of dependency graph nodes\",\"authors\":\"Ayman El-Kilany, Iman Saleh\",\"doi\":\"10.1109/ISDA.2012.6416598\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we investigate the problem of extractive single document summarization. We propose an unsupervised summarization method that is based on extracting and scoring keywords in a document and using them to find the sentences that best represent its content. Keywords are extracted and scored using clustering and dependency graphs of sentences. We test our method using different corpora including news, events and email corpora. We evaluate our method in the context of news summarization and email summarization tasks and compare the results with previously published ones.\",\"PeriodicalId\":370150,\"journal\":{\"name\":\"2012 12th International Conference on Intelligent Systems Design and Applications (ISDA)\",\"volume\":\"74 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2012 12th International Conference on Intelligent Systems Design and Applications (ISDA)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISDA.2012.6416598\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 12th International Conference on Intelligent Systems Design and Applications (ISDA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISDA.2012.6416598","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

摘要

在本文中,我们研究了抽取单文档摘要的问题。我们提出了一种无监督摘要方法,该方法基于对文档中的关键字进行提取和评分,并使用它们来找到最能代表其内容的句子。利用句子的聚类和依赖图提取关键字并进行评分。我们使用不同的语料库来测试我们的方法,包括新闻、事件和电子邮件语料库。我们在新闻摘要和电子邮件摘要任务的背景下评估了我们的方法,并将结果与先前发表的结果进行了比较。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Unsupervised document summarization using clusters of dependency graph nodes
In this paper, we investigate the problem of extractive single document summarization. We propose an unsupervised summarization method that is based on extracting and scoring keywords in a document and using them to find the sentences that best represent its content. Keywords are extracted and scored using clustering and dependency graphs of sentences. We test our method using different corpora including news, events and email corpora. We evaluate our method in the context of news summarization and email summarization tasks and compare the results with previously published ones.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信