包含网络信息的正则化回归:协变量系数和连接符号的同时估计

Matthias Weber, M. Schumacher, H. Binder
{"title":"包含网络信息的正则化回归:协变量系数和连接符号的同时估计","authors":"Matthias Weber, M. Schumacher, H. Binder","doi":"10.2139/ssrn.2466289","DOIUrl":null,"url":null,"abstract":"We develop an algorithm that incorporates network information into regression settings. It simultaneously estimates the covariate coefficients and the signs of the network connections (i.e. whether the connections are of an activating or of a repressing type). For the coefficient estimation steps an additional penalty is set on top of the lasso penalty, similarly to Li and Li (2008). We develop a fast implementation for the new method based on coordinate descent. Furthermore, we show how the new methods can be applied to time-to-event data. The new method yields good results in simulation studies concerning sensitivity and specificity of non-zero covariate coefficients, estimation of network connection signs, and prediction performance. We also apply the new method to two microarray time-to-event data sets from patients with ovarian cancer and diffuse large B-cell lymphoma. The new method performs very well in both cases. The main application of this new method is of biomedical nature, but it may also be useful in other fields where network data is available.","PeriodicalId":384078,"journal":{"name":"ERN: Other Econometrics: Data Collection & Data Estimation Methodology (Topic)","volume":"41 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-06-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"Regularized Regression Incorporating Network Information: Simultaneous Estimation of Covariate Coefficients and Connection Signs\",\"authors\":\"Matthias Weber, M. Schumacher, H. Binder\",\"doi\":\"10.2139/ssrn.2466289\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We develop an algorithm that incorporates network information into regression settings. It simultaneously estimates the covariate coefficients and the signs of the network connections (i.e. whether the connections are of an activating or of a repressing type). For the coefficient estimation steps an additional penalty is set on top of the lasso penalty, similarly to Li and Li (2008). We develop a fast implementation for the new method based on coordinate descent. Furthermore, we show how the new methods can be applied to time-to-event data. The new method yields good results in simulation studies concerning sensitivity and specificity of non-zero covariate coefficients, estimation of network connection signs, and prediction performance. We also apply the new method to two microarray time-to-event data sets from patients with ovarian cancer and diffuse large B-cell lymphoma. The new method performs very well in both cases. The main application of this new method is of biomedical nature, but it may also be useful in other fields where network data is available.\",\"PeriodicalId\":384078,\"journal\":{\"name\":\"ERN: Other Econometrics: Data Collection & Data Estimation Methodology (Topic)\",\"volume\":\"41 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-06-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ERN: Other Econometrics: Data Collection & Data Estimation Methodology (Topic)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2139/ssrn.2466289\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ERN: Other Econometrics: Data Collection & Data Estimation Methodology (Topic)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2139/ssrn.2466289","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

摘要

我们开发了一种将网络信息纳入回归设置的算法。它同时估计协变量系数和网络连接的符号(即连接是激活型还是抑制型)。对于系数估计步骤,在套索惩罚之上设置一个额外的惩罚,类似于Li和Li(2008)。我们开发了一种基于坐标下降的快速实现方法。此外,我们还展示了如何将新方法应用于时间到事件的数据。新方法在非零协变量系数的敏感性和特异性、网络连接符号的估计和预测性能等方面的仿真研究中取得了良好的结果。我们还将新方法应用于卵巢癌和弥漫性大b细胞淋巴瘤患者的两个微阵列事件时间数据集。新方法在这两种情况下都表现得很好。这种新方法的主要应用是生物医学性质,但它也可能在其他领域的网络数据是有用的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Regularized Regression Incorporating Network Information: Simultaneous Estimation of Covariate Coefficients and Connection Signs
We develop an algorithm that incorporates network information into regression settings. It simultaneously estimates the covariate coefficients and the signs of the network connections (i.e. whether the connections are of an activating or of a repressing type). For the coefficient estimation steps an additional penalty is set on top of the lasso penalty, similarly to Li and Li (2008). We develop a fast implementation for the new method based on coordinate descent. Furthermore, we show how the new methods can be applied to time-to-event data. The new method yields good results in simulation studies concerning sensitivity and specificity of non-zero covariate coefficients, estimation of network connection signs, and prediction performance. We also apply the new method to two microarray time-to-event data sets from patients with ovarian cancer and diffuse large B-cell lymphoma. The new method performs very well in both cases. The main application of this new method is of biomedical nature, but it may also be useful in other fields where network data is available.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信