心电图对心血管疾病的解释研究

Kirti, Harsh Sohal, Shruti Jain
{"title":"心电图对心血管疾病的解释研究","authors":"Kirti, Harsh Sohal, Shruti Jain","doi":"10.1109/PDGC.2018.8745999","DOIUrl":null,"url":null,"abstract":"Electrocardiogram (ECG) plays an important role to eliminate diagnostic errors arises in Cardio-Vascular Disease (CVD). Delineation of ECG gives various necessary features which consists of intervals&segments ($\\boldsymbol{R}\\boldsymbol{R}$ interval, $\\boldsymbol{P}\\boldsymbol{R}$ interval, $\\boldsymbol{Q}\\boldsymbol{T}$ interval, $\\boldsymbol{Q}\\boldsymbol{R}\\boldsymbol{S}$ width, $\\boldsymbol{S}\\boldsymbol{T}$ segment) and amplitudes ($\\boldsymbol{Q}\\boldsymbol{R}\\boldsymbol{S}, \\boldsymbol{P}$ and $\\boldsymbol{T}$). These ECG parameters help in guiding the clinicians to diagnose accurately. In this paper, we have reviewed different abnormalities of $\\boldsymbol{P}, \\boldsymbol{Q}\\boldsymbol{R}\\boldsymbol{S}\\& \\boldsymbol{T}$ wave and cardiac rhythm. These abnormalities will lead towards different diseases: Myocardial Infarction (MI), Bundle Branch Block (BBB), Ventricular Hypertrophy (VH), Supraventricular Tachycardia (ST), Wolff-Parkinson White Syndrome (WPWS), Sick Sinus Syndrome (SSS) etc. Further we have done pre-processing using digital filter design (IIR & FIR) with the help of MATLAB and comparison has been made on the basis of their simplicity, phase response and computational complexity.","PeriodicalId":303401,"journal":{"name":"2018 Fifth International Conference on Parallel, Distributed and Grid Computing (PDGC)","volume":"141 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":"{\"title\":\"Interpretation of Cardio Vascular Diseases using Electrocardiogram: A Study\",\"authors\":\"Kirti, Harsh Sohal, Shruti Jain\",\"doi\":\"10.1109/PDGC.2018.8745999\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Electrocardiogram (ECG) plays an important role to eliminate diagnostic errors arises in Cardio-Vascular Disease (CVD). Delineation of ECG gives various necessary features which consists of intervals&segments ($\\\\boldsymbol{R}\\\\boldsymbol{R}$ interval, $\\\\boldsymbol{P}\\\\boldsymbol{R}$ interval, $\\\\boldsymbol{Q}\\\\boldsymbol{T}$ interval, $\\\\boldsymbol{Q}\\\\boldsymbol{R}\\\\boldsymbol{S}$ width, $\\\\boldsymbol{S}\\\\boldsymbol{T}$ segment) and amplitudes ($\\\\boldsymbol{Q}\\\\boldsymbol{R}\\\\boldsymbol{S}, \\\\boldsymbol{P}$ and $\\\\boldsymbol{T}$). These ECG parameters help in guiding the clinicians to diagnose accurately. In this paper, we have reviewed different abnormalities of $\\\\boldsymbol{P}, \\\\boldsymbol{Q}\\\\boldsymbol{R}\\\\boldsymbol{S}\\\\& \\\\boldsymbol{T}$ wave and cardiac rhythm. These abnormalities will lead towards different diseases: Myocardial Infarction (MI), Bundle Branch Block (BBB), Ventricular Hypertrophy (VH), Supraventricular Tachycardia (ST), Wolff-Parkinson White Syndrome (WPWS), Sick Sinus Syndrome (SSS) etc. Further we have done pre-processing using digital filter design (IIR & FIR) with the help of MATLAB and comparison has been made on the basis of their simplicity, phase response and computational complexity.\",\"PeriodicalId\":303401,\"journal\":{\"name\":\"2018 Fifth International Conference on Parallel, Distributed and Grid Computing (PDGC)\",\"volume\":\"141 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"9\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 Fifth International Conference on Parallel, Distributed and Grid Computing (PDGC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/PDGC.2018.8745999\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 Fifth International Conference on Parallel, Distributed and Grid Computing (PDGC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/PDGC.2018.8745999","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9

摘要

心电图(ECG)在消除心血管疾病(CVD)诊断错误方面发挥着重要作用。心电图的描述给出了各种必要的特征,包括区间和段($\boldsymbol{R}\boldsymbol{R}$ interval, $\boldsymbol{P}\boldsymbol{R}$ interval, $\boldsymbol{Q}\boldsymbol{S}$ width, $\boldsymbol{S} $ segment)和振幅($\boldsymbol{Q}\boldsymbol{R}\boldsymbol{S}, \boldsymbol{P}$和$\boldsymbol{T}$)。这些心电图参数有助于指导临床医生准确诊断。本文综述了$\boldsymbol{P}、\boldsymbol{Q}、\boldsymbol{R}、\boldsymbol{S}、\boldsymbol{T}$波与心律的不同异常情况。这些异常会导致不同的疾病:心肌梗死(MI)、束支传导阻滞(BBB)、心室肥厚(VH)、室上性心动过速(ST)、沃尔夫-帕金森氏综合征(WPWS)、病态窦性综合征(SSS)等。此外,我们还利用MATLAB对数字滤波器(IIR和FIR)进行了预处理,并对其简单性、相位响应和计算复杂度进行了比较。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Interpretation of Cardio Vascular Diseases using Electrocardiogram: A Study
Electrocardiogram (ECG) plays an important role to eliminate diagnostic errors arises in Cardio-Vascular Disease (CVD). Delineation of ECG gives various necessary features which consists of intervals&segments ($\boldsymbol{R}\boldsymbol{R}$ interval, $\boldsymbol{P}\boldsymbol{R}$ interval, $\boldsymbol{Q}\boldsymbol{T}$ interval, $\boldsymbol{Q}\boldsymbol{R}\boldsymbol{S}$ width, $\boldsymbol{S}\boldsymbol{T}$ segment) and amplitudes ($\boldsymbol{Q}\boldsymbol{R}\boldsymbol{S}, \boldsymbol{P}$ and $\boldsymbol{T}$). These ECG parameters help in guiding the clinicians to diagnose accurately. In this paper, we have reviewed different abnormalities of $\boldsymbol{P}, \boldsymbol{Q}\boldsymbol{R}\boldsymbol{S}\& \boldsymbol{T}$ wave and cardiac rhythm. These abnormalities will lead towards different diseases: Myocardial Infarction (MI), Bundle Branch Block (BBB), Ventricular Hypertrophy (VH), Supraventricular Tachycardia (ST), Wolff-Parkinson White Syndrome (WPWS), Sick Sinus Syndrome (SSS) etc. Further we have done pre-processing using digital filter design (IIR & FIR) with the help of MATLAB and comparison has been made on the basis of their simplicity, phase response and computational complexity.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信