Alexis Thual, Corentin Dancette, Julien Karadayi, Juan Benjumea, Emmanuel Dupoux
{"title":"无监督口语词汇发现的k近邻方法","authors":"Alexis Thual, Corentin Dancette, Julien Karadayi, Juan Benjumea, Emmanuel Dupoux","doi":"10.1109/SLT.2018.8639515","DOIUrl":null,"url":null,"abstract":"Unsupervised spoken term discovery is the task of finding recurrent acoustic patterns in speech without any annotations. Current approaches consists of two steps: (1) discovering similar patterns in speech, and (2) partitioning those pairs of acoustic tokens using graph clustering methods. We propose a new approach for the first step. Previous systems used various approximation algorithms to make the search tractable on large amounts of data. Our approach is based on an optimized k-nearest neighbours (KNN) search coupled with a fixed word embedding algorithm. The results show that the KNN algorithm is robust across languages, consistently-performs the DTW-based baseline, and is competitive with current state-of-the-art spoken term discovery systems.","PeriodicalId":377307,"journal":{"name":"2018 IEEE Spoken Language Technology Workshop (SLT)","volume":"14 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":"{\"title\":\"A K-Nearest Neighbours Approach To Unsupervised Spoken Term Discovery\",\"authors\":\"Alexis Thual, Corentin Dancette, Julien Karadayi, Juan Benjumea, Emmanuel Dupoux\",\"doi\":\"10.1109/SLT.2018.8639515\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Unsupervised spoken term discovery is the task of finding recurrent acoustic patterns in speech without any annotations. Current approaches consists of two steps: (1) discovering similar patterns in speech, and (2) partitioning those pairs of acoustic tokens using graph clustering methods. We propose a new approach for the first step. Previous systems used various approximation algorithms to make the search tractable on large amounts of data. Our approach is based on an optimized k-nearest neighbours (KNN) search coupled with a fixed word embedding algorithm. The results show that the KNN algorithm is robust across languages, consistently-performs the DTW-based baseline, and is competitive with current state-of-the-art spoken term discovery systems.\",\"PeriodicalId\":377307,\"journal\":{\"name\":\"2018 IEEE Spoken Language Technology Workshop (SLT)\",\"volume\":\"14 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"11\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 IEEE Spoken Language Technology Workshop (SLT)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SLT.2018.8639515\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE Spoken Language Technology Workshop (SLT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SLT.2018.8639515","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A K-Nearest Neighbours Approach To Unsupervised Spoken Term Discovery
Unsupervised spoken term discovery is the task of finding recurrent acoustic patterns in speech without any annotations. Current approaches consists of two steps: (1) discovering similar patterns in speech, and (2) partitioning those pairs of acoustic tokens using graph clustering methods. We propose a new approach for the first step. Previous systems used various approximation algorithms to make the search tractable on large amounts of data. Our approach is based on an optimized k-nearest neighbours (KNN) search coupled with a fixed word embedding algorithm. The results show that the KNN algorithm is robust across languages, consistently-performs the DTW-based baseline, and is competitive with current state-of-the-art spoken term discovery systems.