一种检测物联网中未知恶意软件的新型阴性和阳性选择算法

Hadeel Alrubayyi, G. Goteng, Mona Jaber, James Kelly
{"title":"一种检测物联网中未知恶意软件的新型阴性和阳性选择算法","authors":"Hadeel Alrubayyi, G. Goteng, Mona Jaber, James Kelly","doi":"10.1109/INFOCOMWKSHPS51825.2021.9484483","DOIUrl":null,"url":null,"abstract":"The Internet of Things (IoT) paradigm is a key enabler to many critical applications, thus demands reliable security measures. IoT devices have limited computational power, hence, are inadequate to carry rigorous security mechanisms. This paper proposes the Negative-Positive-Selection (NPS) method which uses an artificial immunity system technique for malware detection. NPS is suitable for the computation restrictions and security challenges associated with IoT. The performance of NPS is benchmarked against state-of-the-art malware detection schemes using a real dataset. Our results show a 21% improvement in malware detection and a 65% reduction in the number of detectors. NPS meets IoT-specific requirements as it outperforms other malware detection mechanisms whilst having less demanding computational requirements.","PeriodicalId":109588,"journal":{"name":"IEEE INFOCOM 2021 - IEEE Conference on Computer Communications Workshops (INFOCOM WKSHPS)","volume":"16 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-05-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"A Novel Negative and Positive Selection Algorithm to Detect Unknown Malware in the IoT\",\"authors\":\"Hadeel Alrubayyi, G. Goteng, Mona Jaber, James Kelly\",\"doi\":\"10.1109/INFOCOMWKSHPS51825.2021.9484483\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The Internet of Things (IoT) paradigm is a key enabler to many critical applications, thus demands reliable security measures. IoT devices have limited computational power, hence, are inadequate to carry rigorous security mechanisms. This paper proposes the Negative-Positive-Selection (NPS) method which uses an artificial immunity system technique for malware detection. NPS is suitable for the computation restrictions and security challenges associated with IoT. The performance of NPS is benchmarked against state-of-the-art malware detection schemes using a real dataset. Our results show a 21% improvement in malware detection and a 65% reduction in the number of detectors. NPS meets IoT-specific requirements as it outperforms other malware detection mechanisms whilst having less demanding computational requirements.\",\"PeriodicalId\":109588,\"journal\":{\"name\":\"IEEE INFOCOM 2021 - IEEE Conference on Computer Communications Workshops (INFOCOM WKSHPS)\",\"volume\":\"16 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-05-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE INFOCOM 2021 - IEEE Conference on Computer Communications Workshops (INFOCOM WKSHPS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/INFOCOMWKSHPS51825.2021.9484483\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE INFOCOM 2021 - IEEE Conference on Computer Communications Workshops (INFOCOM WKSHPS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/INFOCOMWKSHPS51825.2021.9484483","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

物联网(IoT)范式是许多关键应用的关键促成因素,因此需要可靠的安全措施。物联网设备的计算能力有限,因此不足以承载严格的安全机制。本文提出了一种利用人工免疫系统技术进行恶意软件检测的负-正选择方法。NPS适用于与物联网相关的计算限制和安全挑战。NPS的性能是使用真实数据集对最先进的恶意软件检测方案进行基准测试的。我们的结果显示,恶意软件检测提高了21%,检测器数量减少了65%。NPS满足物联网的特定要求,因为它优于其他恶意软件检测机制,同时对计算的要求较低。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Novel Negative and Positive Selection Algorithm to Detect Unknown Malware in the IoT
The Internet of Things (IoT) paradigm is a key enabler to many critical applications, thus demands reliable security measures. IoT devices have limited computational power, hence, are inadequate to carry rigorous security mechanisms. This paper proposes the Negative-Positive-Selection (NPS) method which uses an artificial immunity system technique for malware detection. NPS is suitable for the computation restrictions and security challenges associated with IoT. The performance of NPS is benchmarked against state-of-the-art malware detection schemes using a real dataset. Our results show a 21% improvement in malware detection and a 65% reduction in the number of detectors. NPS meets IoT-specific requirements as it outperforms other malware detection mechanisms whilst having less demanding computational requirements.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信