子群发现中不同模糊规则类型的进化算法分析

C. J. Carmona, P. González, M. J. Jesús, F. Herrera
{"title":"子群发现中不同模糊规则类型的进化算法分析","authors":"C. J. Carmona, P. González, M. J. Jesús, F. Herrera","doi":"10.1109/FUZZY.2009.5277412","DOIUrl":null,"url":null,"abstract":"The interpretability of the results obtained and the quality measures used both to extract and evaluate the rules are two key aspects of Subgroup Discovery. In this study, we analyse the influence of the type of rule used to extract knowledge in Subgroup Discovery, and the quality measures more adapted to the evolutionary algorithms for Subgroup Discovery developed so far. The adaptation of the NMEF-SD algorithm to extract disjunctive formal norm rules is also presented.","PeriodicalId":117895,"journal":{"name":"2009 IEEE International Conference on Fuzzy Systems","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2009-10-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":"{\"title\":\"An analysis of evolutionary algorithms with different types of fuzzy rules in subgroup discovery\",\"authors\":\"C. J. Carmona, P. González, M. J. Jesús, F. Herrera\",\"doi\":\"10.1109/FUZZY.2009.5277412\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The interpretability of the results obtained and the quality measures used both to extract and evaluate the rules are two key aspects of Subgroup Discovery. In this study, we analyse the influence of the type of rule used to extract knowledge in Subgroup Discovery, and the quality measures more adapted to the evolutionary algorithms for Subgroup Discovery developed so far. The adaptation of the NMEF-SD algorithm to extract disjunctive formal norm rules is also presented.\",\"PeriodicalId\":117895,\"journal\":{\"name\":\"2009 IEEE International Conference on Fuzzy Systems\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2009-10-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"11\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2009 IEEE International Conference on Fuzzy Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/FUZZY.2009.5277412\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 IEEE International Conference on Fuzzy Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/FUZZY.2009.5277412","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 11

摘要

所获得结果的可解释性以及用于提取和评估规则的质量度量是子组发现的两个关键方面。在本研究中,我们分析了用于提取知识的规则类型对子群发现的影响,以及更适合于目前发展的子群发现进化算法的质量度量。本文还提出了将NMEF-SD算法应用于析取形式范数规则的提取。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
An analysis of evolutionary algorithms with different types of fuzzy rules in subgroup discovery
The interpretability of the results obtained and the quality measures used both to extract and evaluate the rules are two key aspects of Subgroup Discovery. In this study, we analyse the influence of the type of rule used to extract knowledge in Subgroup Discovery, and the quality measures more adapted to the evolutionary algorithms for Subgroup Discovery developed so far. The adaptation of the NMEF-SD algorithm to extract disjunctive formal norm rules is also presented.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信