基于Jacobian-Torsor统计模型的精密转台公差分析与分配

Wei Mo, Xueming Du, Shun Liu, Sun Jin
{"title":"基于Jacobian-Torsor统计模型的精密转台公差分析与分配","authors":"Wei Mo, Xueming Du, Shun Liu, Sun Jin","doi":"10.1109/WCMEIM56910.2022.10021348","DOIUrl":null,"url":null,"abstract":"Numerical control(NC) rotary table is the core part of the machining center. Due to the existence of multi-source deviation and multi-point assembly of the same part in the assembly of the rotary table, the tolerance chains are more complex, and the assembly result depends on workers to correct during installation at site, resulting in low efficiency and low assembly accuracy. A three-dimensional tolerance modeling method was established based on the Jacobian-Torsor theory. A parallel assembly model was established under multi-point assembly, and the relationship between various deviation sources and assembly deviations is obtained. The contribution of each dimension chain error to the total error is obtained by Monte Carlo analysis, which provides a basis for the designer to allocate tolerance. After several times of iteration procedure, the calculated FR meets the threshold required for product assembly. This method can effectively improve the efficiency of assembly.","PeriodicalId":202270,"journal":{"name":"2022 5th World Conference on Mechanical Engineering and Intelligent Manufacturing (WCMEIM)","volume":"28 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-11-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Tolerance analysis and allocation of precision rotary table based on Jacobian-Torsor statistical model\",\"authors\":\"Wei Mo, Xueming Du, Shun Liu, Sun Jin\",\"doi\":\"10.1109/WCMEIM56910.2022.10021348\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Numerical control(NC) rotary table is the core part of the machining center. Due to the existence of multi-source deviation and multi-point assembly of the same part in the assembly of the rotary table, the tolerance chains are more complex, and the assembly result depends on workers to correct during installation at site, resulting in low efficiency and low assembly accuracy. A three-dimensional tolerance modeling method was established based on the Jacobian-Torsor theory. A parallel assembly model was established under multi-point assembly, and the relationship between various deviation sources and assembly deviations is obtained. The contribution of each dimension chain error to the total error is obtained by Monte Carlo analysis, which provides a basis for the designer to allocate tolerance. After several times of iteration procedure, the calculated FR meets the threshold required for product assembly. This method can effectively improve the efficiency of assembly.\",\"PeriodicalId\":202270,\"journal\":{\"name\":\"2022 5th World Conference on Mechanical Engineering and Intelligent Manufacturing (WCMEIM)\",\"volume\":\"28 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-11-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 5th World Conference on Mechanical Engineering and Intelligent Manufacturing (WCMEIM)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/WCMEIM56910.2022.10021348\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 5th World Conference on Mechanical Engineering and Intelligent Manufacturing (WCMEIM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/WCMEIM56910.2022.10021348","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

数控转台是加工中心的核心部件。由于在转台装配中存在同一零件的多源偏差和多点装配,公差链较为复杂,装配结果依赖于工人在现场安装时进行校正,导致效率低,装配精度低。建立了基于雅可比-托量理论的三维公差建模方法。建立了多点装配下的并联装配模型,得到了各偏差源与装配偏差之间的关系。通过蒙特卡罗分析得到了各尺寸链误差对总误差的贡献,为设计人员分配公差提供了依据。经过多次迭代,计算出的FR满足产品装配所需的阈值。该方法可有效提高装配效率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Tolerance analysis and allocation of precision rotary table based on Jacobian-Torsor statistical model
Numerical control(NC) rotary table is the core part of the machining center. Due to the existence of multi-source deviation and multi-point assembly of the same part in the assembly of the rotary table, the tolerance chains are more complex, and the assembly result depends on workers to correct during installation at site, resulting in low efficiency and low assembly accuracy. A three-dimensional tolerance modeling method was established based on the Jacobian-Torsor theory. A parallel assembly model was established under multi-point assembly, and the relationship between various deviation sources and assembly deviations is obtained. The contribution of each dimension chain error to the total error is obtained by Monte Carlo analysis, which provides a basis for the designer to allocate tolerance. After several times of iteration procedure, the calculated FR meets the threshold required for product assembly. This method can effectively improve the efficiency of assembly.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信