铣削机器人误差补偿控制器

P. Khoi, Ha Thanh Hai, Tran Minh Thuy
{"title":"铣削机器人误差补偿控制器","authors":"P. Khoi, Ha Thanh Hai, Tran Minh Thuy","doi":"10.15625/0866-7136/16979","DOIUrl":null,"url":null,"abstract":"This paper presents a method of controlling a serial robot for milling by an inverse kinematic controller combined with an outer PD loop (Inverse Dynamics + PD controller), with calibration and compensation of errors in calculating the cutting forces. Because the cutting forces are generated at the time of cutting, at the contact area between the workpiece and the cutting tool, the generalized forces of the cutting forces in the differential equations of motion of robot is always variable and difficult to determine precisely. The cutting forces depend on the cutting mode, the geometric parameters of the cutting layer, the cutting conditions, etc. This study shows an inverse dynamic controller with the outer PD loop and an additional calibration block to compensate the differences between the actual cutting forces and calculated cutting forces (which are caculated by the empirical formula). The cutting forces at each machining time of the calibration block is determined based on the differential equation of motion. The efficiency (convergence time and accuracy) of the proposed controller is evaluated by comparison between the numerical simulation results of the controller with cutting force calibration and the conventional PD controller. In the conventional PD controller, the dynamic model of the robot is assumed to define precisely. The results contribute to design and manufacture the controllers for robotic milling, and to improve the quality of the machined surface. \n ","PeriodicalId":239329,"journal":{"name":"Vietnam Journal of Mechanics","volume":"5 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-06-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"An error compensation controller for milling robots\",\"authors\":\"P. Khoi, Ha Thanh Hai, Tran Minh Thuy\",\"doi\":\"10.15625/0866-7136/16979\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents a method of controlling a serial robot for milling by an inverse kinematic controller combined with an outer PD loop (Inverse Dynamics + PD controller), with calibration and compensation of errors in calculating the cutting forces. Because the cutting forces are generated at the time of cutting, at the contact area between the workpiece and the cutting tool, the generalized forces of the cutting forces in the differential equations of motion of robot is always variable and difficult to determine precisely. The cutting forces depend on the cutting mode, the geometric parameters of the cutting layer, the cutting conditions, etc. This study shows an inverse dynamic controller with the outer PD loop and an additional calibration block to compensate the differences between the actual cutting forces and calculated cutting forces (which are caculated by the empirical formula). The cutting forces at each machining time of the calibration block is determined based on the differential equation of motion. The efficiency (convergence time and accuracy) of the proposed controller is evaluated by comparison between the numerical simulation results of the controller with cutting force calibration and the conventional PD controller. In the conventional PD controller, the dynamic model of the robot is assumed to define precisely. The results contribute to design and manufacture the controllers for robotic milling, and to improve the quality of the machined surface. \\n \",\"PeriodicalId\":239329,\"journal\":{\"name\":\"Vietnam Journal of Mechanics\",\"volume\":\"5 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-06-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Vietnam Journal of Mechanics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.15625/0866-7136/16979\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Vietnam Journal of Mechanics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.15625/0866-7136/16979","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

提出了一种采用外PD环(逆动力学+ PD控制器)相结合的逆运动学控制器控制串行铣削机器人的方法,并对切削力计算误差进行校正和补偿。由于切削力是在切削时工件与刀具接触区域产生的,因此机器人运动微分方程中切削力的广义力总是可变的,难以精确确定。切削力取决于切削方式、切削层几何参数、切削条件等。该研究展示了一个带有外部PD回路和附加校准块的逆动态控制器,以补偿实际切削力与计算切削力之间的差异(由经验公式计算)。根据运动微分方程确定了标定块在各加工时刻的切削力。通过将带切削力标定的控制器与传统PD控制器的数值仿真结果进行比较,评价了所提控制器的效率(收敛时间和精度)。在传统的PD控制器中,假定机器人的动力学模型是精确定义的。研究结果有助于机器人铣削控制器的设计和制造,提高加工表面质量。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
An error compensation controller for milling robots
This paper presents a method of controlling a serial robot for milling by an inverse kinematic controller combined with an outer PD loop (Inverse Dynamics + PD controller), with calibration and compensation of errors in calculating the cutting forces. Because the cutting forces are generated at the time of cutting, at the contact area between the workpiece and the cutting tool, the generalized forces of the cutting forces in the differential equations of motion of robot is always variable and difficult to determine precisely. The cutting forces depend on the cutting mode, the geometric parameters of the cutting layer, the cutting conditions, etc. This study shows an inverse dynamic controller with the outer PD loop and an additional calibration block to compensate the differences between the actual cutting forces and calculated cutting forces (which are caculated by the empirical formula). The cutting forces at each machining time of the calibration block is determined based on the differential equation of motion. The efficiency (convergence time and accuracy) of the proposed controller is evaluated by comparison between the numerical simulation results of the controller with cutting force calibration and the conventional PD controller. In the conventional PD controller, the dynamic model of the robot is assumed to define precisely. The results contribute to design and manufacture the controllers for robotic milling, and to improve the quality of the machined surface.  
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信