基于监督学习的腿式运动碰撞检测

F. Doshi-Velez, E. Brunskill, Alexander C. Shkolnik, T. Kollar, Khashayar Rohanimanesh, Russ Tedrake, N. Roy
{"title":"基于监督学习的腿式运动碰撞检测","authors":"F. Doshi-Velez, E. Brunskill, Alexander C. Shkolnik, T. Kollar, Khashayar Rohanimanesh, Russ Tedrake, N. Roy","doi":"10.1109/IROS.2007.4399538","DOIUrl":null,"url":null,"abstract":"We propose a fast approach for detecting collision- free swing-foot trajectories for legged locomotion over extreme terrains. Instead of simulating the swing trajectories and checking for collisions along them, our approach uses machine learning techniques to predict whether a swing trajectory is collision-free. Using a set of local terrain features, we apply supervised learning to train a classifier to predict collisions. Both in simulation and on a real quadruped platform, our results show that our classifiers can improve the accuracy of collision detection compared to a real-time geometric approach without significantly increasing the computation time.","PeriodicalId":227148,"journal":{"name":"2007 IEEE/RSJ International Conference on Intelligent Robots and Systems","volume":"47 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2007-12-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"12","resultStr":"{\"title\":\"Collision detection in legged locomotion using supervised learning\",\"authors\":\"F. Doshi-Velez, E. Brunskill, Alexander C. Shkolnik, T. Kollar, Khashayar Rohanimanesh, Russ Tedrake, N. Roy\",\"doi\":\"10.1109/IROS.2007.4399538\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We propose a fast approach for detecting collision- free swing-foot trajectories for legged locomotion over extreme terrains. Instead of simulating the swing trajectories and checking for collisions along them, our approach uses machine learning techniques to predict whether a swing trajectory is collision-free. Using a set of local terrain features, we apply supervised learning to train a classifier to predict collisions. Both in simulation and on a real quadruped platform, our results show that our classifiers can improve the accuracy of collision detection compared to a real-time geometric approach without significantly increasing the computation time.\",\"PeriodicalId\":227148,\"journal\":{\"name\":\"2007 IEEE/RSJ International Conference on Intelligent Robots and Systems\",\"volume\":\"47 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2007-12-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"12\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2007 IEEE/RSJ International Conference on Intelligent Robots and Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IROS.2007.4399538\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2007 IEEE/RSJ International Conference on Intelligent Robots and Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IROS.2007.4399538","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 12

摘要

我们提出了一种快速检测无碰撞摆动脚轨迹的方法,用于极端地形上的腿部运动。我们的方法不是模拟摆动轨迹并检查它们之间的碰撞,而是使用机器学习技术来预测摆动轨迹是否没有碰撞。使用一组局部地形特征,我们应用监督学习来训练分类器来预测碰撞。在仿真和实际四足动物平台上,我们的结果表明,与实时几何方法相比,我们的分类器可以提高碰撞检测的准确性,而不会显著增加计算时间。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Collision detection in legged locomotion using supervised learning
We propose a fast approach for detecting collision- free swing-foot trajectories for legged locomotion over extreme terrains. Instead of simulating the swing trajectories and checking for collisions along them, our approach uses machine learning techniques to predict whether a swing trajectory is collision-free. Using a set of local terrain features, we apply supervised learning to train a classifier to predict collisions. Both in simulation and on a real quadruped platform, our results show that our classifiers can improve the accuracy of collision detection compared to a real-time geometric approach without significantly increasing the computation time.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信