通过凸优化学习非光滑函数的光滑模型

Fabien Lauer, Van Luong Le, G. Bloch
{"title":"通过凸优化学习非光滑函数的光滑模型","authors":"Fabien Lauer, Van Luong Le, G. Bloch","doi":"10.1109/MLSP.2012.6349755","DOIUrl":null,"url":null,"abstract":"This paper proposes a learning framework and a set of algorithms for nonsmooth regression, i.e., for learning piecewise smooth target functions with discontinuities in the function itself or the derivatives at unknown locations. In the proposed approach, the model belongs to a class of smooth functions. Though constrained to be globally smooth, the trained model can have very large derivatives at particular locations to approximate the nonsmoothness of the target function. This is obtained through the definition of new regularization terms which penalize the derivatives in a location-dependent manner and training algorithms in the form of convex optimization problems. Examples of application to hybrid dynamical system identification and image reconstruction are provided.","PeriodicalId":262601,"journal":{"name":"2012 IEEE International Workshop on Machine Learning for Signal Processing","volume":"90 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-11-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"13","resultStr":"{\"title\":\"Learning smooth models of nonsmooth functions via convex optimization\",\"authors\":\"Fabien Lauer, Van Luong Le, G. Bloch\",\"doi\":\"10.1109/MLSP.2012.6349755\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper proposes a learning framework and a set of algorithms for nonsmooth regression, i.e., for learning piecewise smooth target functions with discontinuities in the function itself or the derivatives at unknown locations. In the proposed approach, the model belongs to a class of smooth functions. Though constrained to be globally smooth, the trained model can have very large derivatives at particular locations to approximate the nonsmoothness of the target function. This is obtained through the definition of new regularization terms which penalize the derivatives in a location-dependent manner and training algorithms in the form of convex optimization problems. Examples of application to hybrid dynamical system identification and image reconstruction are provided.\",\"PeriodicalId\":262601,\"journal\":{\"name\":\"2012 IEEE International Workshop on Machine Learning for Signal Processing\",\"volume\":\"90 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-11-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"13\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2012 IEEE International Workshop on Machine Learning for Signal Processing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/MLSP.2012.6349755\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 IEEE International Workshop on Machine Learning for Signal Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MLSP.2012.6349755","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 13

摘要

本文提出了一种非光滑回归的学习框架和一套算法,即对函数本身不连续或导数在未知位置不连续的光滑目标函数进行分段学习。在该方法中,模型属于一类光滑函数。虽然被约束为全局光滑,但训练模型在特定位置可以有非常大的导数来近似目标函数的非光滑性。这是通过定义新的正则化项来获得的,这些正则化项以位置依赖的方式惩罚导数,并以凸优化问题的形式训练算法。给出了在混合动力系统识别和图像重建中的应用实例。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Learning smooth models of nonsmooth functions via convex optimization
This paper proposes a learning framework and a set of algorithms for nonsmooth regression, i.e., for learning piecewise smooth target functions with discontinuities in the function itself or the derivatives at unknown locations. In the proposed approach, the model belongs to a class of smooth functions. Though constrained to be globally smooth, the trained model can have very large derivatives at particular locations to approximate the nonsmoothness of the target function. This is obtained through the definition of new regularization terms which penalize the derivatives in a location-dependent manner and training algorithms in the form of convex optimization problems. Examples of application to hybrid dynamical system identification and image reconstruction are provided.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信