基于无气味卡尔曼滤波的GMDH神经网络设计:在隧道炉中的应用

M. Luzar, M. Mrugalski, M. Witczak, J. Korbicz
{"title":"基于无气味卡尔曼滤波的GMDH神经网络设计:在隧道炉中的应用","authors":"M. Luzar, M. Mrugalski, M. Witczak, J. Korbicz","doi":"10.1109/MMAR.2011.6031345","DOIUrl":null,"url":null,"abstract":"This paper presents an identification method of dynamic systems based on the Group Method of Data Handing. In particular, a new structure of the dynamic neuron in pole representation is proposed. Moreover, a new training algorithm based on the Unscented Kalman Filter is presented. The final part of this work contains an illustrative example regarding the application of the proposed approach to an identification of the tunnel furnace.","PeriodicalId":440376,"journal":{"name":"2011 16th International Conference on Methods & Models in Automation & Robotics","volume":"27 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-09-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"An unscented Kalman filter approach to designing GMDH neural networks: Application to the tunnel furnace\",\"authors\":\"M. Luzar, M. Mrugalski, M. Witczak, J. Korbicz\",\"doi\":\"10.1109/MMAR.2011.6031345\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents an identification method of dynamic systems based on the Group Method of Data Handing. In particular, a new structure of the dynamic neuron in pole representation is proposed. Moreover, a new training algorithm based on the Unscented Kalman Filter is presented. The final part of this work contains an illustrative example regarding the application of the proposed approach to an identification of the tunnel furnace.\",\"PeriodicalId\":440376,\"journal\":{\"name\":\"2011 16th International Conference on Methods & Models in Automation & Robotics\",\"volume\":\"27 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2011-09-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2011 16th International Conference on Methods & Models in Automation & Robotics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/MMAR.2011.6031345\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 16th International Conference on Methods & Models in Automation & Robotics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MMAR.2011.6031345","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

提出了一种基于数据处理成组方法的动态系统识别方法。特别提出了一种新的动态神经元极点表示结构。此外,提出了一种新的基于无气味卡尔曼滤波的训练算法。本工作的最后一部分包含一个关于应用所提出的方法来识别隧道炉的说明性例子。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
An unscented Kalman filter approach to designing GMDH neural networks: Application to the tunnel furnace
This paper presents an identification method of dynamic systems based on the Group Method of Data Handing. In particular, a new structure of the dynamic neuron in pole representation is proposed. Moreover, a new training algorithm based on the Unscented Kalman Filter is presented. The final part of this work contains an illustrative example regarding the application of the proposed approach to an identification of the tunnel furnace.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信