捕获双模拟不变指数时间复杂度类

Florian Bruse, D. Kronenberger, M. Lange
{"title":"捕获双模拟不变指数时间复杂度类","authors":"Florian Bruse, D. Kronenberger, M. Lange","doi":"10.4204/EPTCS.370.2","DOIUrl":null,"url":null,"abstract":"Otto's Theorem characterises the bisimulation-invariant PTIME queries over graphs as exactly those that can be formulated in the polyadic mu-calculus, hinging on the Immerman-Vardi Theorem which characterises PTIME (over ordered structures) by First-Order Logic with least fixpoints. This connection has been extended to characterise bisimulation-invariant EXPTIME by an extension of the polyadic mu-calculus with functions on predicates, making use of Immerman's characterisation of EXPTIME by Second-Order Logic with least fixpoints. In this paper we show that the bisimulation-invariant versions of all classes in the exponential time hierarchy have logical counterparts which arise as extensions of the polyadic mu-calculus by higher-order functions. This makes use of the characterisation of k-EXPTIME by Higher-Order Logic (of order k+1) with least fixpoints, due to Freire and Martins.","PeriodicalId":104855,"journal":{"name":"International Symposium on Games, Automata, Logics and Formal Verification","volume":"13 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-09-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Capturing Bisimulation-Invariant Exponential-Time Complexity Classes\",\"authors\":\"Florian Bruse, D. Kronenberger, M. Lange\",\"doi\":\"10.4204/EPTCS.370.2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Otto's Theorem characterises the bisimulation-invariant PTIME queries over graphs as exactly those that can be formulated in the polyadic mu-calculus, hinging on the Immerman-Vardi Theorem which characterises PTIME (over ordered structures) by First-Order Logic with least fixpoints. This connection has been extended to characterise bisimulation-invariant EXPTIME by an extension of the polyadic mu-calculus with functions on predicates, making use of Immerman's characterisation of EXPTIME by Second-Order Logic with least fixpoints. In this paper we show that the bisimulation-invariant versions of all classes in the exponential time hierarchy have logical counterparts which arise as extensions of the polyadic mu-calculus by higher-order functions. This makes use of the characterisation of k-EXPTIME by Higher-Order Logic (of order k+1) with least fixpoints, due to Freire and Martins.\",\"PeriodicalId\":104855,\"journal\":{\"name\":\"International Symposium on Games, Automata, Logics and Formal Verification\",\"volume\":\"13 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-09-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Symposium on Games, Automata, Logics and Formal Verification\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4204/EPTCS.370.2\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Symposium on Games, Automata, Logics and Formal Verification","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4204/EPTCS.370.2","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

奥托定理将图上的双模拟不变PTIME查询精确地描述为那些可以在多进模微积分中表述的查询,依赖于用最小不动点的一阶逻辑表征PTIME(过有序结构)的Immerman-Vardi定理。利用Immerman用最小不动点的二阶逻辑对EXPTIME的表征,通过对谓词上函数的多进模演算的扩展,将这种联系扩展到表征双模拟不变EXPTIME。在本文中,我们证明了指数时间层次中所有类的双模拟不变版本都有逻辑对应物,这些对应物是由高阶函数作为多进模微积分的扩展而产生的。这利用了高阶逻辑(k+1阶)的k- exptime的特征,具有最少的不动点,由于Freire和Martins。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Capturing Bisimulation-Invariant Exponential-Time Complexity Classes
Otto's Theorem characterises the bisimulation-invariant PTIME queries over graphs as exactly those that can be formulated in the polyadic mu-calculus, hinging on the Immerman-Vardi Theorem which characterises PTIME (over ordered structures) by First-Order Logic with least fixpoints. This connection has been extended to characterise bisimulation-invariant EXPTIME by an extension of the polyadic mu-calculus with functions on predicates, making use of Immerman's characterisation of EXPTIME by Second-Order Logic with least fixpoints. In this paper we show that the bisimulation-invariant versions of all classes in the exponential time hierarchy have logical counterparts which arise as extensions of the polyadic mu-calculus by higher-order functions. This makes use of the characterisation of k-EXPTIME by Higher-Order Logic (of order k+1) with least fixpoints, due to Freire and Martins.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信