加贝斯湾已探明晚白垩世储层岩石特征:综合案例研究

Senda Boughalmi, Y. Géraud, D. Grosheny, Sonia Ben Alaya, M. Hedi Negra
{"title":"加贝斯湾已探明晚白垩世储层岩石特征:综合案例研究","authors":"Senda Boughalmi, Y. Géraud, D. Grosheny, Sonia Ben Alaya, M. Hedi Negra","doi":"10.1051/bsgf/2022020","DOIUrl":null,"url":null,"abstract":"Microstructural features control the petrophysical properties of rocks. Of these, pore size is particularly sensitive when non-wetting fluids saturate the reservoir. The pore networks and physical properties (helium, water and mercury saturation porosity, bulk density, nitrogen permeability, P-wave velocity and thermal conductivity) of different rock types from a productive Upper Cretaceous (Coniacian) reservoir in the tunisian offshore are measured on hydrocarbon-washed samples. The facies sampled of Douleb Member are wackestone, packstone and grainstone textures as well as dolostone, dolomitized packstone and anhydrite textures. Based mainly on the results obtained by mercury injection, the porous facies of the Coniacian Douleb Member are characterized by a complex pore system with a large morphological and pore size variability in the rock. Porosity values range from 0.3 to 23.6%, bulk densities vary from 2.05 to 2.92 g.cm−3. The permeability is variable from 3760 mD to values below 0.01 mD (measurement limit of the device). P-wave propagation velocity values range from 2060 to 6084 m.s−1 and thermal conductivity varies from 1.43 to 3.77 W.m−1.K−1. The oil-impregnated facies with the best petrophysical characteristics are mainly the rudist-rich limestones and dolomites of the first unit (U1) of the Douleb Member. The well-sorted grainstones with small rudist debris and peloids have the best reservoir qualities. Porosity is the first order characteristic that controls petrophysical properties. The variability of permeability values around this first-order relationship is attributed to variations in the size of the pore access thresholds and connectivity. The variability in velocities is due to the shape of the voids, while the variability in thermal conductivity measurements is due to the nature of the contacts between the grains.","PeriodicalId":202681,"journal":{"name":"BSGF - Earth Sciences Bulletin","volume":"171 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Characterization of proven Late Cretaceous Reservoir rocks in the Gulf of Gabes: Integrated case study\",\"authors\":\"Senda Boughalmi, Y. Géraud, D. Grosheny, Sonia Ben Alaya, M. Hedi Negra\",\"doi\":\"10.1051/bsgf/2022020\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Microstructural features control the petrophysical properties of rocks. Of these, pore size is particularly sensitive when non-wetting fluids saturate the reservoir. The pore networks and physical properties (helium, water and mercury saturation porosity, bulk density, nitrogen permeability, P-wave velocity and thermal conductivity) of different rock types from a productive Upper Cretaceous (Coniacian) reservoir in the tunisian offshore are measured on hydrocarbon-washed samples. The facies sampled of Douleb Member are wackestone, packstone and grainstone textures as well as dolostone, dolomitized packstone and anhydrite textures. Based mainly on the results obtained by mercury injection, the porous facies of the Coniacian Douleb Member are characterized by a complex pore system with a large morphological and pore size variability in the rock. Porosity values range from 0.3 to 23.6%, bulk densities vary from 2.05 to 2.92 g.cm−3. The permeability is variable from 3760 mD to values below 0.01 mD (measurement limit of the device). P-wave propagation velocity values range from 2060 to 6084 m.s−1 and thermal conductivity varies from 1.43 to 3.77 W.m−1.K−1. The oil-impregnated facies with the best petrophysical characteristics are mainly the rudist-rich limestones and dolomites of the first unit (U1) of the Douleb Member. The well-sorted grainstones with small rudist debris and peloids have the best reservoir qualities. Porosity is the first order characteristic that controls petrophysical properties. The variability of permeability values around this first-order relationship is attributed to variations in the size of the pore access thresholds and connectivity. The variability in velocities is due to the shape of the voids, while the variability in thermal conductivity measurements is due to the nature of the contacts between the grains.\",\"PeriodicalId\":202681,\"journal\":{\"name\":\"BSGF - Earth Sciences Bulletin\",\"volume\":\"171 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1900-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"BSGF - Earth Sciences Bulletin\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1051/bsgf/2022020\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"BSGF - Earth Sciences Bulletin","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1051/bsgf/2022020","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

微观结构特征控制着岩石的物性。其中,当非润湿流体使储层饱和时,孔隙大小尤为敏感。对突尼斯海上上白垩统(Coniacian)储层不同岩石类型的孔隙网络和物理性质(氦、水和汞饱和孔隙度、体积密度、氮渗透率、纵波速度和导热系数)进行了烃洗样测量。双段取样相主要为微晶岩、泥质岩和颗粒岩,以及白云岩、白云化泥质岩和硬石膏。以压汞研究结果为主要依据,认为Coniacian双段孔隙相具有孔隙系统复杂、岩石形态和孔隙大小变化大的特点。孔隙度为0.3 ~ 23.6%,容重为2.05 ~ 2.92 g.cm−3。磁导率从3760 mD到低于0.01 mD(该装置的测量极限)的值变化。纵波传播速度取值范围为2060 ~ 6084 m。s−1,导热系数为1.43 ~ 3.77 W.m−1. k−1。岩石物性特征最好的油浸相主要为双段一段(U1)富泥质灰岩和白云岩。分选良好的颗粒岩、细小的粗粒碎屑和似球粒具有最好的储集性。孔隙度是控制岩石物性的一级特征。渗透率值在这种一阶关系周围的变化归因于孔隙进入阈值和连通性的大小变化。速度的变化是由于空隙的形状,而热导率测量的变化是由于颗粒之间接触的性质。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Characterization of proven Late Cretaceous Reservoir rocks in the Gulf of Gabes: Integrated case study
Microstructural features control the petrophysical properties of rocks. Of these, pore size is particularly sensitive when non-wetting fluids saturate the reservoir. The pore networks and physical properties (helium, water and mercury saturation porosity, bulk density, nitrogen permeability, P-wave velocity and thermal conductivity) of different rock types from a productive Upper Cretaceous (Coniacian) reservoir in the tunisian offshore are measured on hydrocarbon-washed samples. The facies sampled of Douleb Member are wackestone, packstone and grainstone textures as well as dolostone, dolomitized packstone and anhydrite textures. Based mainly on the results obtained by mercury injection, the porous facies of the Coniacian Douleb Member are characterized by a complex pore system with a large morphological and pore size variability in the rock. Porosity values range from 0.3 to 23.6%, bulk densities vary from 2.05 to 2.92 g.cm−3. The permeability is variable from 3760 mD to values below 0.01 mD (measurement limit of the device). P-wave propagation velocity values range from 2060 to 6084 m.s−1 and thermal conductivity varies from 1.43 to 3.77 W.m−1.K−1. The oil-impregnated facies with the best petrophysical characteristics are mainly the rudist-rich limestones and dolomites of the first unit (U1) of the Douleb Member. The well-sorted grainstones with small rudist debris and peloids have the best reservoir qualities. Porosity is the first order characteristic that controls petrophysical properties. The variability of permeability values around this first-order relationship is attributed to variations in the size of the pore access thresholds and connectivity. The variability in velocities is due to the shape of the voids, while the variability in thermal conductivity measurements is due to the nature of the contacts between the grains.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信