目标分割任务和视频问答任务的端到端训练

H. Nakada, H. Asoh
{"title":"目标分割任务和视频问答任务的端到端训练","authors":"H. Nakada, H. Asoh","doi":"10.1109/IMCOM56909.2023.10035642","DOIUrl":null,"url":null,"abstract":"For complicated Visual Question Answering(VQA) tasks that incorporates multiple objects, to train the VQA model using segmented objects data as inputs is proved to be effective for various downstream tasks. In this work, we tried to train the VQA task model and object segmentation model in end-to-end fashion instead of training independently. We employed CLEVRER as a target VQA task. We first trained MONet(Multiple Object Network), an object segmentation network, with the dataset, and trained Aloe, a VQA model, using the output of the trained MONet. Finally we connect MONet and Aloe to fine-tune them in end-to-end setting and confirmed that the performance of VOA task has been greatly improved.","PeriodicalId":230213,"journal":{"name":"2023 17th International Conference on Ubiquitous Information Management and Communication (IMCOM)","volume":"31 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-01-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"End-To-End Training Of Object Segmentation Task And Video Question-Answering Task\",\"authors\":\"H. Nakada, H. Asoh\",\"doi\":\"10.1109/IMCOM56909.2023.10035642\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"For complicated Visual Question Answering(VQA) tasks that incorporates multiple objects, to train the VQA model using segmented objects data as inputs is proved to be effective for various downstream tasks. In this work, we tried to train the VQA task model and object segmentation model in end-to-end fashion instead of training independently. We employed CLEVRER as a target VQA task. We first trained MONet(Multiple Object Network), an object segmentation network, with the dataset, and trained Aloe, a VQA model, using the output of the trained MONet. Finally we connect MONet and Aloe to fine-tune them in end-to-end setting and confirmed that the performance of VOA task has been greatly improved.\",\"PeriodicalId\":230213,\"journal\":{\"name\":\"2023 17th International Conference on Ubiquitous Information Management and Communication (IMCOM)\",\"volume\":\"31 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-01-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2023 17th International Conference on Ubiquitous Information Management and Communication (IMCOM)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IMCOM56909.2023.10035642\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 17th International Conference on Ubiquitous Information Management and Communication (IMCOM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IMCOM56909.2023.10035642","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

对于包含多个对象的复杂视觉问答(VQA)任务,使用分割的对象数据作为输入来训练VQA模型对各种下游任务是有效的。在这项工作中,我们尝试以端到端方式训练VQA任务模型和对象分割模型,而不是独立训练。我们使用clever作为目标VQA任务。我们首先使用数据集训练MONet(多对象网络),一个对象分割网络,并使用训练后的MONet的输出训练Aloe,一个VQA模型。最后,我们将MONet和Aloe连接在端到端环境中进行微调,证实了VOA任务的性能有了很大的提高。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
End-To-End Training Of Object Segmentation Task And Video Question-Answering Task
For complicated Visual Question Answering(VQA) tasks that incorporates multiple objects, to train the VQA model using segmented objects data as inputs is proved to be effective for various downstream tasks. In this work, we tried to train the VQA task model and object segmentation model in end-to-end fashion instead of training independently. We employed CLEVRER as a target VQA task. We first trained MONet(Multiple Object Network), an object segmentation network, with the dataset, and trained Aloe, a VQA model, using the output of the trained MONet. Finally we connect MONet and Aloe to fine-tune them in end-to-end setting and confirmed that the performance of VOA task has been greatly improved.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信