{"title":"比较稀疏多项式乘法程序的速度","authors":"R. Fateman","doi":"10.1145/844076.844080","DOIUrl":null,"url":null,"abstract":"How should one design and implement a program for the multiplication of sparse polynomials? This is a simple question, necessarily addressed by the builders of any computer algebra system (CAS). To examine a few options we start with a single easily-stated computation which we believe represents a useful benchmark of \"medium difficulty\" for CAS designs. We describe a number of design options and their effects on performance. We also examine the performance of a variety of commercial and freely-distributed systems. Important considerations include the cost of high-precision (exact) integer arithmetic and the effective use of cache memory.","PeriodicalId":314801,"journal":{"name":"SIGSAM Bull.","volume":"27 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2003-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"50","resultStr":"{\"title\":\"Comparing the speed of programs for sparse polynomial multiplication\",\"authors\":\"R. Fateman\",\"doi\":\"10.1145/844076.844080\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"How should one design and implement a program for the multiplication of sparse polynomials? This is a simple question, necessarily addressed by the builders of any computer algebra system (CAS). To examine a few options we start with a single easily-stated computation which we believe represents a useful benchmark of \\\"medium difficulty\\\" for CAS designs. We describe a number of design options and their effects on performance. We also examine the performance of a variety of commercial and freely-distributed systems. Important considerations include the cost of high-precision (exact) integer arithmetic and the effective use of cache memory.\",\"PeriodicalId\":314801,\"journal\":{\"name\":\"SIGSAM Bull.\",\"volume\":\"27 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2003-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"50\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"SIGSAM Bull.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/844076.844080\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"SIGSAM Bull.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/844076.844080","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Comparing the speed of programs for sparse polynomial multiplication
How should one design and implement a program for the multiplication of sparse polynomials? This is a simple question, necessarily addressed by the builders of any computer algebra system (CAS). To examine a few options we start with a single easily-stated computation which we believe represents a useful benchmark of "medium difficulty" for CAS designs. We describe a number of design options and their effects on performance. We also examine the performance of a variety of commercial and freely-distributed systems. Important considerations include the cost of high-precision (exact) integer arithmetic and the effective use of cache memory.