基于显著性的主动轮廓图像分割和区域检测模型

Aditi Joshi, Mohammed Saquib Khan, Usman Asim, A. Munir, H. Song, K. Choi
{"title":"基于显著性的主动轮廓图像分割和区域检测模型","authors":"Aditi Joshi, Mohammed Saquib Khan, Usman Asim, A. Munir, H. Song, K. Choi","doi":"10.1109/ISPACS51563.2021.9651050","DOIUrl":null,"url":null,"abstract":"In this paper, we propose a novel saliency-based active contour model for image segmentation and region detection (SAIR) to overcome the problems of noise and intensity inhomogeneity in image segmentation. The proposed new level set protocol evolves adaptively and eliminates the need for initialization. In the proposed energy function, we formulate an adaptive weight function that adaptively changes the intensity of the internal and external energy functions according to the image. Moreover, according to the inner and outer regions, modulating the signs in the proposed energy function influences the elimination of noise in the image. Finally, SAIR is tested on multiple images with different initial contour positions, intensity inhomogeneity, and noise to demonstrate the robustness of SAIR.","PeriodicalId":359822,"journal":{"name":"2021 International Symposium on Intelligent Signal Processing and Communication Systems (ISPACS)","volume":"26 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-11-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Saliency-based Active Contour Model for Image Segmentation and Region Detection\",\"authors\":\"Aditi Joshi, Mohammed Saquib Khan, Usman Asim, A. Munir, H. Song, K. Choi\",\"doi\":\"10.1109/ISPACS51563.2021.9651050\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we propose a novel saliency-based active contour model for image segmentation and region detection (SAIR) to overcome the problems of noise and intensity inhomogeneity in image segmentation. The proposed new level set protocol evolves adaptively and eliminates the need for initialization. In the proposed energy function, we formulate an adaptive weight function that adaptively changes the intensity of the internal and external energy functions according to the image. Moreover, according to the inner and outer regions, modulating the signs in the proposed energy function influences the elimination of noise in the image. Finally, SAIR is tested on multiple images with different initial contour positions, intensity inhomogeneity, and noise to demonstrate the robustness of SAIR.\",\"PeriodicalId\":359822,\"journal\":{\"name\":\"2021 International Symposium on Intelligent Signal Processing and Communication Systems (ISPACS)\",\"volume\":\"26 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-11-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 International Symposium on Intelligent Signal Processing and Communication Systems (ISPACS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISPACS51563.2021.9651050\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 International Symposium on Intelligent Signal Processing and Communication Systems (ISPACS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISPACS51563.2021.9651050","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文提出了一种新的基于显著性的图像分割与区域检测(SAIR)活动轮廓模型,以克服图像分割中的噪声和强度不均匀性问题。提出的新水平集协议自适应发展,消除了初始化的需要。在提出的能量函数中,我们制定了一个自适应权函数,根据图像自适应地改变内外能量函数的强度。此外,根据内外区域,调制所提出的能量函数中的符号会影响图像中噪声的消除。最后,在具有不同初始轮廓位置、强度不均匀性和噪声的多幅图像上对SAIR进行了测试,验证了SAIR的鲁棒性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Saliency-based Active Contour Model for Image Segmentation and Region Detection
In this paper, we propose a novel saliency-based active contour model for image segmentation and region detection (SAIR) to overcome the problems of noise and intensity inhomogeneity in image segmentation. The proposed new level set protocol evolves adaptively and eliminates the need for initialization. In the proposed energy function, we formulate an adaptive weight function that adaptively changes the intensity of the internal and external energy functions according to the image. Moreover, according to the inner and outer regions, modulating the signs in the proposed energy function influences the elimination of noise in the image. Finally, SAIR is tested on multiple images with different initial contour positions, intensity inhomogeneity, and noise to demonstrate the robustness of SAIR.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信