空间自适应图像恢复及其FIR实现

Jinyoung Youn, Younguk Park, Jeongho Shin, J. Paik
{"title":"空间自适应图像恢复及其FIR实现","authors":"Jinyoung Youn, Younguk Park, Jeongho Shin, J. Paik","doi":"10.1109/FGCNS.2008.54","DOIUrl":null,"url":null,"abstract":"This paper presents a spatially adaptive image restoration for EDoF lens images. A practical implementation method is also discussed for real-time applications. For basic image restoration we adopt the truncated constrained least squares (TCLS) filter, and for adaptively selecting the weights of the observed and the restored images we compute local variance. Based on experimental results, we can claim that the proposed restoration algorithm can successfully remove the image degradation with suppressing noise amplification.","PeriodicalId":370780,"journal":{"name":"2008 Second International Conference on Future Generation Communication and Networking Symposia","volume":"24 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2008-12-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Spatially Adaptive Image Restoration and its FIR Implementation\",\"authors\":\"Jinyoung Youn, Younguk Park, Jeongho Shin, J. Paik\",\"doi\":\"10.1109/FGCNS.2008.54\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents a spatially adaptive image restoration for EDoF lens images. A practical implementation method is also discussed for real-time applications. For basic image restoration we adopt the truncated constrained least squares (TCLS) filter, and for adaptively selecting the weights of the observed and the restored images we compute local variance. Based on experimental results, we can claim that the proposed restoration algorithm can successfully remove the image degradation with suppressing noise amplification.\",\"PeriodicalId\":370780,\"journal\":{\"name\":\"2008 Second International Conference on Future Generation Communication and Networking Symposia\",\"volume\":\"24 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2008-12-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2008 Second International Conference on Future Generation Communication and Networking Symposia\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/FGCNS.2008.54\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2008 Second International Conference on Future Generation Communication and Networking Symposia","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/FGCNS.2008.54","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

提出了一种EDoF镜头图像的空间自适应图像恢复方法。讨论了实时应用的实际实现方法。对于基本图像的恢复,我们采用截断约束最小二乘(TCLS)滤波器,并计算局部方差自适应地选择观测图像和恢复图像的权重。实验结果表明,所提出的恢复算法能够有效地消除图像的退化,抑制噪声的放大。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Spatially Adaptive Image Restoration and its FIR Implementation
This paper presents a spatially adaptive image restoration for EDoF lens images. A practical implementation method is also discussed for real-time applications. For basic image restoration we adopt the truncated constrained least squares (TCLS) filter, and for adaptively selecting the weights of the observed and the restored images we compute local variance. Based on experimental results, we can claim that the proposed restoration algorithm can successfully remove the image degradation with suppressing noise amplification.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信