{"title":"基于实例模型的多假设跟踪","authors":"Michael Pätzold, Rubén Heras Evangelio, T. Sikora","doi":"10.1109/AVSS.2012.18","DOIUrl":null,"url":null,"abstract":"In this paper we present a visual person tracking-by-detection system based on on-line-learned instance-specific information along with the kinematic relation of measurements provided by a generic person-category detector. The proposed system is able to initialize tracks on individual persons and start learning their appearance even in crowded situations and does not require that a person enters the scene separately. For that purpose we integrate the process of learning instance-specific models into a standard MHT-framework. The capability of the system to eliminate detections-to-object association ambiguities occurring from missed detections or false ones is demonstrated by experiments for counting and tracking applications using very long video sequences on challenging outdoor scenarios.","PeriodicalId":275325,"journal":{"name":"2012 IEEE Ninth International Conference on Advanced Video and Signal-Based Surveillance","volume":"2012 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Boosting Multi-hypothesis Tracking by Means of Instance-Specific Models\",\"authors\":\"Michael Pätzold, Rubén Heras Evangelio, T. Sikora\",\"doi\":\"10.1109/AVSS.2012.18\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper we present a visual person tracking-by-detection system based on on-line-learned instance-specific information along with the kinematic relation of measurements provided by a generic person-category detector. The proposed system is able to initialize tracks on individual persons and start learning their appearance even in crowded situations and does not require that a person enters the scene separately. For that purpose we integrate the process of learning instance-specific models into a standard MHT-framework. The capability of the system to eliminate detections-to-object association ambiguities occurring from missed detections or false ones is demonstrated by experiments for counting and tracking applications using very long video sequences on challenging outdoor scenarios.\",\"PeriodicalId\":275325,\"journal\":{\"name\":\"2012 IEEE Ninth International Conference on Advanced Video and Signal-Based Surveillance\",\"volume\":\"2012 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-09-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2012 IEEE Ninth International Conference on Advanced Video and Signal-Based Surveillance\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/AVSS.2012.18\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 IEEE Ninth International Conference on Advanced Video and Signal-Based Surveillance","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/AVSS.2012.18","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Boosting Multi-hypothesis Tracking by Means of Instance-Specific Models
In this paper we present a visual person tracking-by-detection system based on on-line-learned instance-specific information along with the kinematic relation of measurements provided by a generic person-category detector. The proposed system is able to initialize tracks on individual persons and start learning their appearance even in crowded situations and does not require that a person enters the scene separately. For that purpose we integrate the process of learning instance-specific models into a standard MHT-framework. The capability of the system to eliminate detections-to-object association ambiguities occurring from missed detections or false ones is demonstrated by experiments for counting and tracking applications using very long video sequences on challenging outdoor scenarios.