不断学习,不忘,重新认识自己

Nehemia Sugianto, D. Tjondronegoro, G. Sorwar, Prithwi Raj Chakraborty, E. Yuwono
{"title":"不断学习,不忘,重新认识自己","authors":"Nehemia Sugianto, D. Tjondronegoro, G. Sorwar, Prithwi Raj Chakraborty, E. Yuwono","doi":"10.1109/AVSS.2019.8909828","DOIUrl":null,"url":null,"abstract":"Deep learning-based person re-identification faces a scalability challenge when the target domain requires continuous learning. Service environments, such as airports, need to recognize new visitors and add new cameras over time. Training-at-once is not enough to make the model robust to new tasks and domain variations. A well-known approach is fine-tuning, which suffers forgetting problem on old tasks when learning new tasks. Joint-training can alleviate the problem but requires old datasets, which is unobtainable in some cases. Recently, Learning without forgetting (LwF) shows its ability to mitigate the problem without old datasets. This paper extends the benefit of LwF from image classification to person re-identification with further challenges. Comprehensive experiments are based on Market1501 and DukeMTMC4ReID to evaluate and benchmark LwF to other approaches. The results confirm that LwF outperforms fine-tuning in preserving old knowledge and joint-training in faster training.","PeriodicalId":243194,"journal":{"name":"2019 16th IEEE International Conference on Advanced Video and Signal Based Surveillance (AVSS)","volume":"40 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":"{\"title\":\"Continuous Learning without Forgetting for Person Re-Identification\",\"authors\":\"Nehemia Sugianto, D. Tjondronegoro, G. Sorwar, Prithwi Raj Chakraborty, E. Yuwono\",\"doi\":\"10.1109/AVSS.2019.8909828\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Deep learning-based person re-identification faces a scalability challenge when the target domain requires continuous learning. Service environments, such as airports, need to recognize new visitors and add new cameras over time. Training-at-once is not enough to make the model robust to new tasks and domain variations. A well-known approach is fine-tuning, which suffers forgetting problem on old tasks when learning new tasks. Joint-training can alleviate the problem but requires old datasets, which is unobtainable in some cases. Recently, Learning without forgetting (LwF) shows its ability to mitigate the problem without old datasets. This paper extends the benefit of LwF from image classification to person re-identification with further challenges. Comprehensive experiments are based on Market1501 and DukeMTMC4ReID to evaluate and benchmark LwF to other approaches. The results confirm that LwF outperforms fine-tuning in preserving old knowledge and joint-training in faster training.\",\"PeriodicalId\":243194,\"journal\":{\"name\":\"2019 16th IEEE International Conference on Advanced Video and Signal Based Surveillance (AVSS)\",\"volume\":\"40 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"9\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 16th IEEE International Conference on Advanced Video and Signal Based Surveillance (AVSS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/AVSS.2019.8909828\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 16th IEEE International Conference on Advanced Video and Signal Based Surveillance (AVSS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/AVSS.2019.8909828","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9

摘要

当目标领域需要持续学习时,基于深度学习的人物再识别面临着可扩展性的挑战。服务环境,如机场,需要识别新的访客,并随着时间的推移增加新的摄像头。一次训练不足以使模型对新任务和领域变化具有鲁棒性。一种众所周知的方法是微调,它在学习新任务时遇到旧任务的遗忘问题。关节训练可以缓解这个问题,但需要旧的数据集,这在某些情况下是无法获得的。最近,无遗忘学习(LwF)显示了它在没有旧数据集的情况下缓解问题的能力。本文将LwF的优势从图像分类扩展到人的再识别。综合实验基于Market1501和DukeMTMC4ReID对LwF和其他方法进行评估和基准测试。结果证实LwF在保存旧知识和快速训练中的联合训练方面优于微调。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Continuous Learning without Forgetting for Person Re-Identification
Deep learning-based person re-identification faces a scalability challenge when the target domain requires continuous learning. Service environments, such as airports, need to recognize new visitors and add new cameras over time. Training-at-once is not enough to make the model robust to new tasks and domain variations. A well-known approach is fine-tuning, which suffers forgetting problem on old tasks when learning new tasks. Joint-training can alleviate the problem but requires old datasets, which is unobtainable in some cases. Recently, Learning without forgetting (LwF) shows its ability to mitigate the problem without old datasets. This paper extends the benefit of LwF from image classification to person re-identification with further challenges. Comprehensive experiments are based on Market1501 and DukeMTMC4ReID to evaluate and benchmark LwF to other approaches. The results confirm that LwF outperforms fine-tuning in preserving old knowledge and joint-training in faster training.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信