Chih-Kai Kang, Yu-Jhang Cai, Chin-Hsien Wu, P. Hsiu
{"title":"高性能虚拟机的混合存储访问框架","authors":"Chih-Kai Kang, Yu-Jhang Cai, Chin-Hsien Wu, P. Hsiu","doi":"10.1145/2660493","DOIUrl":null,"url":null,"abstract":"In recent years, advances in virtualization technology have enabled multiple virtual machines to run on a physical machine, such that each virtual machine can perform independently with its own operating system. The IT industry has adopted virtualization technology because of its ability to improve hardware resource utilization, achieve low-power consumption, support concurrent applications, simplify device management, and reduce maintenance costs. However, because of the hardware limitation of storage devices, the I/O capacity could cause performance bottlenecks. To address the problem, we propose a hybrid storage access framework that exploits solid-state drives (SSDs) to improve the I/O performance in a virtualization environment.","PeriodicalId":183677,"journal":{"name":"ACM Trans. Embed. Comput. Syst.","volume":"78 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-12-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"A Hybrid Storage Access Framework for High-Performance Virtual Machines\",\"authors\":\"Chih-Kai Kang, Yu-Jhang Cai, Chin-Hsien Wu, P. Hsiu\",\"doi\":\"10.1145/2660493\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In recent years, advances in virtualization technology have enabled multiple virtual machines to run on a physical machine, such that each virtual machine can perform independently with its own operating system. The IT industry has adopted virtualization technology because of its ability to improve hardware resource utilization, achieve low-power consumption, support concurrent applications, simplify device management, and reduce maintenance costs. However, because of the hardware limitation of storage devices, the I/O capacity could cause performance bottlenecks. To address the problem, we propose a hybrid storage access framework that exploits solid-state drives (SSDs) to improve the I/O performance in a virtualization environment.\",\"PeriodicalId\":183677,\"journal\":{\"name\":\"ACM Trans. Embed. Comput. Syst.\",\"volume\":\"78 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-12-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACM Trans. Embed. Comput. Syst.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/2660493\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM Trans. Embed. Comput. Syst.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2660493","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A Hybrid Storage Access Framework for High-Performance Virtual Machines
In recent years, advances in virtualization technology have enabled multiple virtual machines to run on a physical machine, such that each virtual machine can perform independently with its own operating system. The IT industry has adopted virtualization technology because of its ability to improve hardware resource utilization, achieve low-power consumption, support concurrent applications, simplify device management, and reduce maintenance costs. However, because of the hardware limitation of storage devices, the I/O capacity could cause performance bottlenecks. To address the problem, we propose a hybrid storage access framework that exploits solid-state drives (SSDs) to improve the I/O performance in a virtualization environment.