基于增强现实的人机交互深度学习,实现机器人团队自动化

Adhitha Dias, Hasitha Wellaboda, Yasod Rasanka, M. Munasinghe, R. Rodrigo, P. Jayasekara
{"title":"基于增强现实的人机交互深度学习,实现机器人团队自动化","authors":"Adhitha Dias, Hasitha Wellaboda, Yasod Rasanka, M. Munasinghe, R. Rodrigo, P. Jayasekara","doi":"10.1109/ICCAR49639.2020.9108004","DOIUrl":null,"url":null,"abstract":"Getting a team of robots to achieve a relatively complex task using manual manipulation through augmented reality (AR) is interesting. However, the true potential of such an approach manifests when the system can learn from humans. We propose a system comprising a team of robots that performs a previously unseen task—a variant, to be specific—by learning from the sequences of actions taken by multiple human beings doing this task in various ways using deep learning (DL). The training inputs can be through actual manipulation of the team of robots using an augmented-reality tablet or through a simulator. Results indicate that the system is able to fulfill the specified variant of the task more than 80% of the time, inaccuracies mainly owing to unrealistic specifications of tasks. This opens up an avenue of training a team of robots, instead of crafting a rule base.","PeriodicalId":412255,"journal":{"name":"2020 6th International Conference on Control, Automation and Robotics (ICCAR)","volume":"8 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Deep Learning of Augmented Reality based Human Interactions for Automating a Robot Team\",\"authors\":\"Adhitha Dias, Hasitha Wellaboda, Yasod Rasanka, M. Munasinghe, R. Rodrigo, P. Jayasekara\",\"doi\":\"10.1109/ICCAR49639.2020.9108004\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Getting a team of robots to achieve a relatively complex task using manual manipulation through augmented reality (AR) is interesting. However, the true potential of such an approach manifests when the system can learn from humans. We propose a system comprising a team of robots that performs a previously unseen task—a variant, to be specific—by learning from the sequences of actions taken by multiple human beings doing this task in various ways using deep learning (DL). The training inputs can be through actual manipulation of the team of robots using an augmented-reality tablet or through a simulator. Results indicate that the system is able to fulfill the specified variant of the task more than 80% of the time, inaccuracies mainly owing to unrealistic specifications of tasks. This opens up an avenue of training a team of robots, instead of crafting a rule base.\",\"PeriodicalId\":412255,\"journal\":{\"name\":\"2020 6th International Conference on Control, Automation and Robotics (ICCAR)\",\"volume\":\"8 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 6th International Conference on Control, Automation and Robotics (ICCAR)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICCAR49639.2020.9108004\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 6th International Conference on Control, Automation and Robotics (ICCAR)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCAR49639.2020.9108004","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

通过增强现实(AR)技术,让一组机器人通过手动操作来完成一项相对复杂的任务,这很有趣。然而,当系统能够向人类学习时,这种方法的真正潜力就会显现出来。我们提出了一个由一组机器人组成的系统,该系统通过使用深度学习(DL)从多个人类以各种方式执行该任务所采取的行动序列中学习,来执行以前未见过的任务(具体来说是一种变体)。训练输入可以通过使用增强现实平板电脑或模拟器对机器人团队进行实际操作。结果表明,该系统能够在80%以上的时间内完成任务的指定变体,不准确主要是由于任务的不现实规格。这为训练机器人团队开辟了一条道路,而不是制作一个规则库。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Deep Learning of Augmented Reality based Human Interactions for Automating a Robot Team
Getting a team of robots to achieve a relatively complex task using manual manipulation through augmented reality (AR) is interesting. However, the true potential of such an approach manifests when the system can learn from humans. We propose a system comprising a team of robots that performs a previously unseen task—a variant, to be specific—by learning from the sequences of actions taken by multiple human beings doing this task in various ways using deep learning (DL). The training inputs can be through actual manipulation of the team of robots using an augmented-reality tablet or through a simulator. Results indicate that the system is able to fulfill the specified variant of the task more than 80% of the time, inaccuracies mainly owing to unrealistic specifications of tasks. This opens up an avenue of training a team of robots, instead of crafting a rule base.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信