基于贝叶斯后验密度的网络重构扰动实验设计

A. Almudevar, P. Salzman
{"title":"基于贝叶斯后验密度的网络重构扰动实验设计","authors":"A. Almudevar, P. Salzman","doi":"10.1109/CIBCB.2005.1594920","DOIUrl":null,"url":null,"abstract":"Gene perturbation experiments are commonly used in the reconstruction of gene regulatory networks. Because such experiments are often difficult to perform, it is important to predict on a rational basis those experiments likely to result in the greatest resolution of model uncertainty. When a method for constructing Bayesian posterior densities on the space of network models is available, this provides a means with which to estimate the expected reduction in entropy that would result from a given perturbation experiment. We define an algorithm for selecting perturbation experiments based on this idea, and demonstrate it using a simulation study using a Bayesian network model.","PeriodicalId":330810,"journal":{"name":"2005 IEEE Symposium on Computational Intelligence in Bioinformatics and Computational Biology","volume":"8 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":"{\"title\":\"Using a Bayesian Posterior Density in the Design of Perturbation Experiments for Network Reconstruction\",\"authors\":\"A. Almudevar, P. Salzman\",\"doi\":\"10.1109/CIBCB.2005.1594920\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Gene perturbation experiments are commonly used in the reconstruction of gene regulatory networks. Because such experiments are often difficult to perform, it is important to predict on a rational basis those experiments likely to result in the greatest resolution of model uncertainty. When a method for constructing Bayesian posterior densities on the space of network models is available, this provides a means with which to estimate the expected reduction in entropy that would result from a given perturbation experiment. We define an algorithm for selecting perturbation experiments based on this idea, and demonstrate it using a simulation study using a Bayesian network model.\",\"PeriodicalId\":330810,\"journal\":{\"name\":\"2005 IEEE Symposium on Computational Intelligence in Bioinformatics and Computational Biology\",\"volume\":\"8 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1900-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"9\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2005 IEEE Symposium on Computational Intelligence in Bioinformatics and Computational Biology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CIBCB.2005.1594920\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2005 IEEE Symposium on Computational Intelligence in Bioinformatics and Computational Biology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CIBCB.2005.1594920","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9

摘要

基因扰动实验是重建基因调控网络的常用方法。因为这样的实验通常很难进行,所以在合理的基础上预测那些可能导致模型不确定性的最大分辨率的实验是很重要的。当一种在网络模型空间上构造贝叶斯后验密度的方法可用时,这就提供了一种方法来估计由给定扰动实验产生的熵的预期减少。我们在此基础上定义了一种选择扰动实验的算法,并利用贝叶斯网络模型进行了仿真研究。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Using a Bayesian Posterior Density in the Design of Perturbation Experiments for Network Reconstruction
Gene perturbation experiments are commonly used in the reconstruction of gene regulatory networks. Because such experiments are often difficult to perform, it is important to predict on a rational basis those experiments likely to result in the greatest resolution of model uncertainty. When a method for constructing Bayesian posterior densities on the space of network models is available, this provides a means with which to estimate the expected reduction in entropy that would result from a given perturbation experiment. We define an algorithm for selecting perturbation experiments based on this idea, and demonstrate it using a simulation study using a Bayesian network model.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信