数据速率感知的基于fpga的流媒体应用加速框架

Siavash Rezaei, César-Alejandro Hernández-Calderón, S. Mirzamohammadi, E. Bozorgzadeh, A. Veidenbaum, A. Nicolau, M. Prather
{"title":"数据速率感知的基于fpga的流媒体应用加速框架","authors":"Siavash Rezaei, César-Alejandro Hernández-Calderón, S. Mirzamohammadi, E. Bozorgzadeh, A. Veidenbaum, A. Nicolau, M. Prather","doi":"10.1109/ReConFig.2016.7857162","DOIUrl":null,"url":null,"abstract":"In heterogeneous architectures, FPGAs are not only expected to provide higher performance, but also to provide a more energy efficient solution for computationally intensive tasks. While parallelism and pipelining enhance performance on FPGA platforms, the data transfer rate from/to off-chip memory can cause performance degradation. We propose an automated high-level synthesis framework for FPGA-based acceleration of nested loops on large multidimensional input data sets. Given the high-level of parallelism in such applications, our proposed data prefetching algorithm determines the data rate for each parallel datapath. The empirical results on a case study in scientific computing show that FPGA mapping of such nested loops accelerates the application compared to traditional mapping on multicores. The FPGA-accelerated computation results in 3x speedup in runtime and 27x energy-delay-product savings compared to multicore computation.","PeriodicalId":431909,"journal":{"name":"2016 International Conference on ReConFigurable Computing and FPGAs (ReConFig)","volume":"196 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":"{\"title\":\"Data-rate-aware FPGA-based acceleration framework for streaming applications\",\"authors\":\"Siavash Rezaei, César-Alejandro Hernández-Calderón, S. Mirzamohammadi, E. Bozorgzadeh, A. Veidenbaum, A. Nicolau, M. Prather\",\"doi\":\"10.1109/ReConFig.2016.7857162\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In heterogeneous architectures, FPGAs are not only expected to provide higher performance, but also to provide a more energy efficient solution for computationally intensive tasks. While parallelism and pipelining enhance performance on FPGA platforms, the data transfer rate from/to off-chip memory can cause performance degradation. We propose an automated high-level synthesis framework for FPGA-based acceleration of nested loops on large multidimensional input data sets. Given the high-level of parallelism in such applications, our proposed data prefetching algorithm determines the data rate for each parallel datapath. The empirical results on a case study in scientific computing show that FPGA mapping of such nested loops accelerates the application compared to traditional mapping on multicores. The FPGA-accelerated computation results in 3x speedup in runtime and 27x energy-delay-product savings compared to multicore computation.\",\"PeriodicalId\":431909,\"journal\":{\"name\":\"2016 International Conference on ReConFigurable Computing and FPGAs (ReConFig)\",\"volume\":\"196 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 International Conference on ReConFigurable Computing and FPGAs (ReConFig)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ReConFig.2016.7857162\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 International Conference on ReConFigurable Computing and FPGAs (ReConFig)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ReConFig.2016.7857162","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

摘要

在异构架构中,fpga不仅要提供更高的性能,还要为计算密集型任务提供更节能的解决方案。虽然并行性和流水线可以增强FPGA平台上的性能,但片外存储器之间的数据传输速率可能会导致性能下降。我们提出了一个自动化的高级合成框架,用于在大型多维输入数据集上基于fpga的嵌套循环加速。考虑到这些应用程序的高级并行性,我们提出的数据预取算法决定了每个并行数据路径的数据速率。在科学计算中的实例研究表明,与传统的多核映射相比,这种嵌套循环的FPGA映射加快了应用程序的速度。与多核计算相比,fpga加速计算的运行速度提高了3倍,能量延迟产品节省了27倍。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Data-rate-aware FPGA-based acceleration framework for streaming applications
In heterogeneous architectures, FPGAs are not only expected to provide higher performance, but also to provide a more energy efficient solution for computationally intensive tasks. While parallelism and pipelining enhance performance on FPGA platforms, the data transfer rate from/to off-chip memory can cause performance degradation. We propose an automated high-level synthesis framework for FPGA-based acceleration of nested loops on large multidimensional input data sets. Given the high-level of parallelism in such applications, our proposed data prefetching algorithm determines the data rate for each parallel datapath. The empirical results on a case study in scientific computing show that FPGA mapping of such nested loops accelerates the application compared to traditional mapping on multicores. The FPGA-accelerated computation results in 3x speedup in runtime and 27x energy-delay-product savings compared to multicore computation.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信