Lan Peng, Soon-Wook Kim, Mike Soules, M. Gabriel, M. Zoberbier, E. Sleeckx, H. Struyf, Andy Miller, E. Beyne
{"title":"用于3D系统集成的W2W永久堆叠","authors":"Lan Peng, Soon-Wook Kim, Mike Soules, M. Gabriel, M. Zoberbier, E. Sleeckx, H. Struyf, Andy Miller, E. Beyne","doi":"10.1109/EPTC.2014.7028287","DOIUrl":null,"url":null,"abstract":"In this paper, we present advances in 300mm wafer-to-wafer (W2W) oxide-oxide bonding for high density 3D interconnect application. A CMOS compatible low temperature oxide-oxide bonding method has been developed which yields consistent void-free bonding. In addition, sub-micron W2W alignment accuracy has been demonstrated with standalone test materials using an integrated permanent bonding platform.","PeriodicalId":115713,"journal":{"name":"2014 IEEE 16th Electronics Packaging Technology Conference (EPTC)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"14","resultStr":"{\"title\":\"W2W permanent stacking for 3D system integration\",\"authors\":\"Lan Peng, Soon-Wook Kim, Mike Soules, M. Gabriel, M. Zoberbier, E. Sleeckx, H. Struyf, Andy Miller, E. Beyne\",\"doi\":\"10.1109/EPTC.2014.7028287\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we present advances in 300mm wafer-to-wafer (W2W) oxide-oxide bonding for high density 3D interconnect application. A CMOS compatible low temperature oxide-oxide bonding method has been developed which yields consistent void-free bonding. In addition, sub-micron W2W alignment accuracy has been demonstrated with standalone test materials using an integrated permanent bonding platform.\",\"PeriodicalId\":115713,\"journal\":{\"name\":\"2014 IEEE 16th Electronics Packaging Technology Conference (EPTC)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"14\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2014 IEEE 16th Electronics Packaging Technology Conference (EPTC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/EPTC.2014.7028287\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 IEEE 16th Electronics Packaging Technology Conference (EPTC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/EPTC.2014.7028287","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
In this paper, we present advances in 300mm wafer-to-wafer (W2W) oxide-oxide bonding for high density 3D interconnect application. A CMOS compatible low temperature oxide-oxide bonding method has been developed which yields consistent void-free bonding. In addition, sub-micron W2W alignment accuracy has been demonstrated with standalone test materials using an integrated permanent bonding platform.