基于鸟瞰视频的地面车辆跟踪与速度估计

Dongyang Zhao, Yuqing Chen, Shuanghe Yu
{"title":"基于鸟瞰视频的地面车辆跟踪与速度估计","authors":"Dongyang Zhao, Yuqing Chen, Shuanghe Yu","doi":"10.1109/CACRE50138.2020.9230274","DOIUrl":null,"url":null,"abstract":"With the rapid technology development in autonomous navigation of Unmanned Aerial Vehicles (UAVs) and robust object detection based on deep neural networks, the field of traffic analysis through aerial video has attracted widespread attention. In this paper, we investigate the problems of ground vehicle tracking and speed estimation using aerial view videos. At the first stage, the vehicle detection is performed through the YOLOv3 network, which is the state-of-the-art object detector. Then, a tracking-by-detection method is designed to tracking the traffic vehicles. Furthermore, in order to estimate the vehicle speed in traffic while the UAV navigating in different heights, the least square algorithm is utilized to fit the measurement data and determine the power function mapping relationship between the vehicle pixel distance and the actual distance, which further improves the accuracy of speed estimation effectively.","PeriodicalId":325195,"journal":{"name":"2020 5th International Conference on Automation, Control and Robotics Engineering (CACRE)","volume":"64 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Tracking and Speed Estimation of Ground Vehicles Using Aerial-view Videos\",\"authors\":\"Dongyang Zhao, Yuqing Chen, Shuanghe Yu\",\"doi\":\"10.1109/CACRE50138.2020.9230274\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"With the rapid technology development in autonomous navigation of Unmanned Aerial Vehicles (UAVs) and robust object detection based on deep neural networks, the field of traffic analysis through aerial video has attracted widespread attention. In this paper, we investigate the problems of ground vehicle tracking and speed estimation using aerial view videos. At the first stage, the vehicle detection is performed through the YOLOv3 network, which is the state-of-the-art object detector. Then, a tracking-by-detection method is designed to tracking the traffic vehicles. Furthermore, in order to estimate the vehicle speed in traffic while the UAV navigating in different heights, the least square algorithm is utilized to fit the measurement data and determine the power function mapping relationship between the vehicle pixel distance and the actual distance, which further improves the accuracy of speed estimation effectively.\",\"PeriodicalId\":325195,\"journal\":{\"name\":\"2020 5th International Conference on Automation, Control and Robotics Engineering (CACRE)\",\"volume\":\"64 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 5th International Conference on Automation, Control and Robotics Engineering (CACRE)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CACRE50138.2020.9230274\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 5th International Conference on Automation, Control and Robotics Engineering (CACRE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CACRE50138.2020.9230274","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

随着无人机自主导航技术和基于深度神经网络的鲁棒目标检测技术的快速发展,航空视频交通分析领域受到了广泛关注。本文研究了利用鸟瞰图视频进行地面车辆跟踪和速度估计的问题。在第一阶段,车辆检测通过YOLOv3网络进行,这是最先进的目标探测器。然后,设计了一种基于检测的跟踪方法对交通车辆进行跟踪。此外,为了估计无人机在不同高度飞行时的交通车速,利用最小二乘算法对测量数据进行拟合,确定车辆像素距离与实际距离的幂函数映射关系,进一步有效提高了速度估计的精度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Tracking and Speed Estimation of Ground Vehicles Using Aerial-view Videos
With the rapid technology development in autonomous navigation of Unmanned Aerial Vehicles (UAVs) and robust object detection based on deep neural networks, the field of traffic analysis through aerial video has attracted widespread attention. In this paper, we investigate the problems of ground vehicle tracking and speed estimation using aerial view videos. At the first stage, the vehicle detection is performed through the YOLOv3 network, which is the state-of-the-art object detector. Then, a tracking-by-detection method is designed to tracking the traffic vehicles. Furthermore, in order to estimate the vehicle speed in traffic while the UAV navigating in different heights, the least square algorithm is utilized to fit the measurement data and determine the power function mapping relationship between the vehicle pixel distance and the actual distance, which further improves the accuracy of speed estimation effectively.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信