基于接近度的室内定位系统精度的实验评价

S. T. Kouyoumdjieva, G. Karlsson
{"title":"基于接近度的室内定位系统精度的实验评价","authors":"S. T. Kouyoumdjieva, G. Karlsson","doi":"10.23919/WONS.2019.8795488","DOIUrl":null,"url":null,"abstract":"Bluetooth Low Energy beacons are small transmitters with long battery life that are considered for providing proximity-based services. In this work we evaluate experimentally the performance of a proximity-based indoor positioning system built with off-the-shelf beacons in a realistic environment. We demonstrate that the performance of the system depends on a number of factors, such as the distance between the beacon and the mobile device, the positioning of the beacon as well as the presence and positioning of obstacles such as human bodies. We further propose an online algorithm based on moving average forecasting and evaluate the algorithm in the presence of human mobility. We conclude that algorithms for proximity-based indoor positioning must be evaluated in realistic scenarios, for instance considering people and traffic on the used radio bands. The uncertainty in positioning is high in our experiments and hence the success of commercial context-aware solutions based on BLE beacons is highly dependent on the accuracy required by each application.","PeriodicalId":185451,"journal":{"name":"2019 15th Annual Conference on Wireless On-demand Network Systems and Services (WONS)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"Experimental Evaluation of Precision of a Proximity-based Indoor Positioning System\",\"authors\":\"S. T. Kouyoumdjieva, G. Karlsson\",\"doi\":\"10.23919/WONS.2019.8795488\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Bluetooth Low Energy beacons are small transmitters with long battery life that are considered for providing proximity-based services. In this work we evaluate experimentally the performance of a proximity-based indoor positioning system built with off-the-shelf beacons in a realistic environment. We demonstrate that the performance of the system depends on a number of factors, such as the distance between the beacon and the mobile device, the positioning of the beacon as well as the presence and positioning of obstacles such as human bodies. We further propose an online algorithm based on moving average forecasting and evaluate the algorithm in the presence of human mobility. We conclude that algorithms for proximity-based indoor positioning must be evaluated in realistic scenarios, for instance considering people and traffic on the used radio bands. The uncertainty in positioning is high in our experiments and hence the success of commercial context-aware solutions based on BLE beacons is highly dependent on the accuracy required by each application.\",\"PeriodicalId\":185451,\"journal\":{\"name\":\"2019 15th Annual Conference on Wireless On-demand Network Systems and Services (WONS)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1900-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 15th Annual Conference on Wireless On-demand Network Systems and Services (WONS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.23919/WONS.2019.8795488\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 15th Annual Conference on Wireless On-demand Network Systems and Services (WONS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23919/WONS.2019.8795488","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

摘要

蓝牙低功耗信标是一种小型发射机,电池寿命长,可用于提供基于距离的服务。在这项工作中,我们通过实验评估了在现实环境中使用现成信标构建的基于接近度的室内定位系统的性能。我们证明了系统的性能取决于许多因素,例如信标与移动设备之间的距离,信标的定位以及障碍物(如人体)的存在和定位。我们进一步提出了一种基于移动平均预测的在线算法,并在存在人员流动性的情况下对该算法进行了评估。我们的结论是,基于接近度的室内定位算法必须在现实场景中进行评估,例如考虑使用的无线电频段上的人员和交通。在我们的实验中,定位的不确定性很高,因此基于BLE信标的商业上下文感知解决方案的成功高度依赖于每个应用所需的精度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Experimental Evaluation of Precision of a Proximity-based Indoor Positioning System
Bluetooth Low Energy beacons are small transmitters with long battery life that are considered for providing proximity-based services. In this work we evaluate experimentally the performance of a proximity-based indoor positioning system built with off-the-shelf beacons in a realistic environment. We demonstrate that the performance of the system depends on a number of factors, such as the distance between the beacon and the mobile device, the positioning of the beacon as well as the presence and positioning of obstacles such as human bodies. We further propose an online algorithm based on moving average forecasting and evaluate the algorithm in the presence of human mobility. We conclude that algorithms for proximity-based indoor positioning must be evaluated in realistic scenarios, for instance considering people and traffic on the used radio bands. The uncertainty in positioning is high in our experiments and hence the success of commercial context-aware solutions based on BLE beacons is highly dependent on the accuracy required by each application.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信