{"title":"Сurvature-torsion张量用于Cartan连接","authors":"Y. Shevchenko","doi":"10.5922/0321-4796-2019-50-18","DOIUrl":null,"url":null,"abstract":"A Lie group containing a subgroup is considered. Such a group is a principal bundle, a typical fiber of this principal bundle is the subgroup and a base is a homogeneous space, which is obtained by factoring the group by the subgroup. Starting from this group, we constructed structure equations of a space with Cartan connection, which generalizes the Cartan point projective connection, Akivis’s linear projective connection, and a plane projective connection. Structure equations of this Cartan connection, containing the components of the curvature-torsion object, allowed: 1) to show that the curvature-torsion object forms a tensor containing a torsion tensor; 2) to find an analogue of the Bianchi identities such that the curvature-torsion tensor and its Pfaff derivatives satisfy this analogue; 3) to obtain the conditions for the transformation of Pfaffian derivatives of the curvature-torsion tensor into covariant derivatives with respect to the Cartan connection.","PeriodicalId":114406,"journal":{"name":"Differential Geometry of Manifolds of Figures","volume":"75 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Сurvature-torsion tensor for Cartan connection\",\"authors\":\"Y. Shevchenko\",\"doi\":\"10.5922/0321-4796-2019-50-18\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A Lie group containing a subgroup is considered. Such a group is a principal bundle, a typical fiber of this principal bundle is the subgroup and a base is a homogeneous space, which is obtained by factoring the group by the subgroup. Starting from this group, we constructed structure equations of a space with Cartan connection, which generalizes the Cartan point projective connection, Akivis’s linear projective connection, and a plane projective connection. Structure equations of this Cartan connection, containing the components of the curvature-torsion object, allowed: 1) to show that the curvature-torsion object forms a tensor containing a torsion tensor; 2) to find an analogue of the Bianchi identities such that the curvature-torsion tensor and its Pfaff derivatives satisfy this analogue; 3) to obtain the conditions for the transformation of Pfaffian derivatives of the curvature-torsion tensor into covariant derivatives with respect to the Cartan connection.\",\"PeriodicalId\":114406,\"journal\":{\"name\":\"Differential Geometry of Manifolds of Figures\",\"volume\":\"75 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1900-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Differential Geometry of Manifolds of Figures\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5922/0321-4796-2019-50-18\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Differential Geometry of Manifolds of Figures","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5922/0321-4796-2019-50-18","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A Lie group containing a subgroup is considered. Such a group is a principal bundle, a typical fiber of this principal bundle is the subgroup and a base is a homogeneous space, which is obtained by factoring the group by the subgroup. Starting from this group, we constructed structure equations of a space with Cartan connection, which generalizes the Cartan point projective connection, Akivis’s linear projective connection, and a plane projective connection. Structure equations of this Cartan connection, containing the components of the curvature-torsion object, allowed: 1) to show that the curvature-torsion object forms a tensor containing a torsion tensor; 2) to find an analogue of the Bianchi identities such that the curvature-torsion tensor and its Pfaff derivatives satisfy this analogue; 3) to obtain the conditions for the transformation of Pfaffian derivatives of the curvature-torsion tensor into covariant derivatives with respect to the Cartan connection.