吉氏染色血膜恶性疟原虫的自动检测

Wongsakorn Preedanan, M. Phothisonothai, W. Senavongse, S. Tantisatirapong
{"title":"吉氏染色血膜恶性疟原虫的自动检测","authors":"Wongsakorn Preedanan, M. Phothisonothai, W. Senavongse, S. Tantisatirapong","doi":"10.1109/KST.2016.7440501","DOIUrl":null,"url":null,"abstract":"This paper investigates automated detection of malaria parasites in images of Giemsa-stained thin blood films. We aim to determine parasitemia based on automatic segmentation, feature extraction and classification methods. Segmentation relies on adaptive thresholding and watershed methods. Statistical features are then computed for each cell and classified using SVM binary classifier. Accuracy of classification is validated based on the leave-one-out cross-validation technique. This processing pipeline is applied on total 15 images of Giemsa-stained thin blood films and yields 92.71% sensitivity, 97.35% specificity and 97.17% accuracy.","PeriodicalId":350687,"journal":{"name":"2016 8th International Conference on Knowledge and Smart Technology (KST)","volume":"77 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-03-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"14","resultStr":"{\"title\":\"Automated detection of plasmodium falciparum from Giemsa-stained thin blood films\",\"authors\":\"Wongsakorn Preedanan, M. Phothisonothai, W. Senavongse, S. Tantisatirapong\",\"doi\":\"10.1109/KST.2016.7440501\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper investigates automated detection of malaria parasites in images of Giemsa-stained thin blood films. We aim to determine parasitemia based on automatic segmentation, feature extraction and classification methods. Segmentation relies on adaptive thresholding and watershed methods. Statistical features are then computed for each cell and classified using SVM binary classifier. Accuracy of classification is validated based on the leave-one-out cross-validation technique. This processing pipeline is applied on total 15 images of Giemsa-stained thin blood films and yields 92.71% sensitivity, 97.35% specificity and 97.17% accuracy.\",\"PeriodicalId\":350687,\"journal\":{\"name\":\"2016 8th International Conference on Knowledge and Smart Technology (KST)\",\"volume\":\"77 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-03-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"14\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 8th International Conference on Knowledge and Smart Technology (KST)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/KST.2016.7440501\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 8th International Conference on Knowledge and Smart Technology (KST)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/KST.2016.7440501","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 14

摘要

本文研究了吉姆萨染色血膜图像中疟原虫的自动检测方法。我们的目标是基于自动分割、特征提取和分类方法来确定寄生虫。分割依赖于自适应阈值和分水岭方法。然后计算每个单元的统计特征,并使用SVM二值分类器进行分类。基于留一交叉验证技术对分类的准确性进行了验证。该处理流程应用于共15张giemsa染色血膜图像,灵敏度为92.71%,特异性为97.35%,准确率为97.17%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Automated detection of plasmodium falciparum from Giemsa-stained thin blood films
This paper investigates automated detection of malaria parasites in images of Giemsa-stained thin blood films. We aim to determine parasitemia based on automatic segmentation, feature extraction and classification methods. Segmentation relies on adaptive thresholding and watershed methods. Statistical features are then computed for each cell and classified using SVM binary classifier. Accuracy of classification is validated based on the leave-one-out cross-validation technique. This processing pipeline is applied on total 15 images of Giemsa-stained thin blood films and yields 92.71% sensitivity, 97.35% specificity and 97.17% accuracy.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信