基于因果网络的fMRI功能连接建模

F. Deleus, P. D. Mazière, M. Hulle
{"title":"基于因果网络的fMRI功能连接建模","authors":"F. Deleus, P. D. Mazière, M. Hulle","doi":"10.1109/NNSP.2002.1030023","DOIUrl":null,"url":null,"abstract":"We apply the principle of causal networks to develop a new tool for connectivity analysis in functional magnetic resonance imaging (fMRI). The connections between active brain regions are modelled as causal relationships in a causal network. The causal networks are based on the notion of d-separation in a graph-theoretic context or, equivalently, on the notion of conditional independence in a statistical context. Since relationships between brain regions are believed to be nonlinear in nature, we express the conditional dependencies between the brain regions' activities in terms of conditional mutual information. The density estimates needed for computing the conditional mutual information are obtained with topographic maps, trained with the kernel-based maximum entropy rule (kMER).","PeriodicalId":117945,"journal":{"name":"Proceedings of the 12th IEEE Workshop on Neural Networks for Signal Processing","volume":"3 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2002-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Functional connectivity modelling in fMRI based on causal networks\",\"authors\":\"F. Deleus, P. D. Mazière, M. Hulle\",\"doi\":\"10.1109/NNSP.2002.1030023\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We apply the principle of causal networks to develop a new tool for connectivity analysis in functional magnetic resonance imaging (fMRI). The connections between active brain regions are modelled as causal relationships in a causal network. The causal networks are based on the notion of d-separation in a graph-theoretic context or, equivalently, on the notion of conditional independence in a statistical context. Since relationships between brain regions are believed to be nonlinear in nature, we express the conditional dependencies between the brain regions' activities in terms of conditional mutual information. The density estimates needed for computing the conditional mutual information are obtained with topographic maps, trained with the kernel-based maximum entropy rule (kMER).\",\"PeriodicalId\":117945,\"journal\":{\"name\":\"Proceedings of the 12th IEEE Workshop on Neural Networks for Signal Processing\",\"volume\":\"3 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2002-11-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 12th IEEE Workshop on Neural Networks for Signal Processing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/NNSP.2002.1030023\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 12th IEEE Workshop on Neural Networks for Signal Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/NNSP.2002.1030023","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

我们应用因果网络原理开发了一种功能磁共振成像(fMRI)中连通性分析的新工具。大脑活动区域之间的联系被建模为因果网络中的因果关系。因果网络是基于图论语境中的d分离概念,或者等价地,基于统计语境中的条件独立概念。由于大脑区域之间的关系被认为是非线性的,我们用条件互信息来表达大脑区域活动之间的条件依赖关系。计算条件互信息所需的密度估计由地形图获得,并使用基于核的最大熵规则(kMER)进行训练。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Functional connectivity modelling in fMRI based on causal networks
We apply the principle of causal networks to develop a new tool for connectivity analysis in functional magnetic resonance imaging (fMRI). The connections between active brain regions are modelled as causal relationships in a causal network. The causal networks are based on the notion of d-separation in a graph-theoretic context or, equivalently, on the notion of conditional independence in a statistical context. Since relationships between brain regions are believed to be nonlinear in nature, we express the conditional dependencies between the brain regions' activities in terms of conditional mutual information. The density estimates needed for computing the conditional mutual information are obtained with topographic maps, trained with the kernel-based maximum entropy rule (kMER).
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信