用于最小二乘估计的线性收缩阵列

M.-J. Chen, K. Yao
{"title":"用于最小二乘估计的线性收缩阵列","authors":"M.-J. Chen, K. Yao","doi":"10.1109/ARRAYS.1988.18047","DOIUrl":null,"url":null,"abstract":"The use of square-root-free linear systolic array structure to perform the QR decomposition needed in the solution of least-squares (LS) problems is proposed. A form of the Kalman filter algorithm is applied to perform the recursive LS estimation. Compared with the conventional triangular systolic array structure for LS estimation, the linear array has the advantage of requiring less area and being simpler for VLSI implementation.<<ETX>>","PeriodicalId":339807,"journal":{"name":"[1988] Proceedings. International Conference on Systolic Arrays","volume":"100 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1988-05-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":"{\"title\":\"Linear systolic array for least-squares estimation\",\"authors\":\"M.-J. Chen, K. Yao\",\"doi\":\"10.1109/ARRAYS.1988.18047\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The use of square-root-free linear systolic array structure to perform the QR decomposition needed in the solution of least-squares (LS) problems is proposed. A form of the Kalman filter algorithm is applied to perform the recursive LS estimation. Compared with the conventional triangular systolic array structure for LS estimation, the linear array has the advantage of requiring less area and being simpler for VLSI implementation.<<ETX>>\",\"PeriodicalId\":339807,\"journal\":{\"name\":\"[1988] Proceedings. International Conference on Systolic Arrays\",\"volume\":\"100 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1988-05-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"[1988] Proceedings. International Conference on Systolic Arrays\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ARRAYS.1988.18047\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"[1988] Proceedings. International Conference on Systolic Arrays","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ARRAYS.1988.18047","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

摘要

提出了利用无平方根线性收缩阵列结构进行求解最小二乘问题所需的QR分解。采用一种卡尔曼滤波算法进行递归LS估计。与传统的三角形收缩阵列结构相比,线性阵列具有面积小、易于VLSI实现的优点。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Linear systolic array for least-squares estimation
The use of square-root-free linear systolic array structure to perform the QR decomposition needed in the solution of least-squares (LS) problems is proposed. A form of the Kalman filter algorithm is applied to perform the recursive LS estimation. Compared with the conventional triangular systolic array structure for LS estimation, the linear array has the advantage of requiring less area and being simpler for VLSI implementation.<>
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信