氮掺杂MnO2纳米棒作为高能Zn-MnO2电池的阴极

Yalan Huang, Wanyi He, Peng Zhang, Xihong Lu
{"title":"氮掺杂MnO2纳米棒作为高能Zn-MnO2电池的阴极","authors":"Yalan Huang, Wanyi He, Peng Zhang, Xihong Lu","doi":"10.1142/S1793604718400064","DOIUrl":null,"url":null,"abstract":"The development of manganese dioxide (MnO[Formula: see text] as the cathode for aqueous Zn-MnO2 batteries is hindered by poor capacity. Herein, we propose a high-capacity MnO2 cathode constructed by engineering it with N-doping (N-MnO[Formula: see text] for a high-performance Zn-MnO2 battery. Benefiting from N element doping, the conductivity of N-MnO2 nanorods (NRs) electrode has been improved and the dissolution of the cathode during cycling can be relieved to some extent. The fabricated Zn-N-MnO2 battery based on the N-MnO2 cathode and a Zn foil anode presents an a real capacity of 0.31[Formula: see text]mAh[Formula: see text]cm[Formula: see text] at 2[Formula: see text]mA[Formula: see text]cm[Formula: see text], together with a remarkable energy density of 154.3[Formula: see text]Wh[Formula: see text]kg[Formula: see text] and a peak power density of 6914.7[Formula: see text]W[Formula: see text]kg[Formula: see text], substantially higher than most recently reported energy storage devices. The strategy of N doping can also bring intensive interest for other electrode materials for energy storage systems.","PeriodicalId":301934,"journal":{"name":"Functional Materials for Next-Generation Rechargeable Batteries","volume":"21 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"27","resultStr":"{\"title\":\"Nitrogen-Doped MnO2 Nanorods as Cathodes for High-Energy Zn-MnO2 Batteries\",\"authors\":\"Yalan Huang, Wanyi He, Peng Zhang, Xihong Lu\",\"doi\":\"10.1142/S1793604718400064\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The development of manganese dioxide (MnO[Formula: see text] as the cathode for aqueous Zn-MnO2 batteries is hindered by poor capacity. Herein, we propose a high-capacity MnO2 cathode constructed by engineering it with N-doping (N-MnO[Formula: see text] for a high-performance Zn-MnO2 battery. Benefiting from N element doping, the conductivity of N-MnO2 nanorods (NRs) electrode has been improved and the dissolution of the cathode during cycling can be relieved to some extent. The fabricated Zn-N-MnO2 battery based on the N-MnO2 cathode and a Zn foil anode presents an a real capacity of 0.31[Formula: see text]mAh[Formula: see text]cm[Formula: see text] at 2[Formula: see text]mA[Formula: see text]cm[Formula: see text], together with a remarkable energy density of 154.3[Formula: see text]Wh[Formula: see text]kg[Formula: see text] and a peak power density of 6914.7[Formula: see text]W[Formula: see text]kg[Formula: see text], substantially higher than most recently reported energy storage devices. The strategy of N doping can also bring intensive interest for other electrode materials for energy storage systems.\",\"PeriodicalId\":301934,\"journal\":{\"name\":\"Functional Materials for Next-Generation Rechargeable Batteries\",\"volume\":\"21 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"27\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Functional Materials for Next-Generation Rechargeable Batteries\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1142/S1793604718400064\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Functional Materials for Next-Generation Rechargeable Batteries","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1142/S1793604718400064","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 27

摘要

二氧化锰(MnO[公式:见文])作为含水锌-二氧化锰电池阴极的发展受到容量差的阻碍。在此,我们提出了一种高容量MnO2阴极,通过n掺杂(N-MnO[公式:见文本]工程构建,用于高性能Zn-MnO2电池。N元素的掺杂提高了N- mno2纳米棒电极的电导率,并在一定程度上缓解了循环过程中阴极的溶解。基于N-MnO2阴极和Zn箔阳极制备的Zn-N-MnO2电池在2[公式:见文]mA[公式:见文]cm[公式:见文]时的实际容量为0.31[公式:见文]mAh[公式:见文]cm[公式:见文],能量密度为154.3[公式:见文]Wh[公式:见文]kg[公式:见文],峰值功率密度为6914.7[公式:见文]W[公式:见文]kg[公式:见文]远高于最近报道的能量储存装置。氮掺杂的策略也可以引起其他电极材料用于储能系统的强烈兴趣。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Nitrogen-Doped MnO2 Nanorods as Cathodes for High-Energy Zn-MnO2 Batteries
The development of manganese dioxide (MnO[Formula: see text] as the cathode for aqueous Zn-MnO2 batteries is hindered by poor capacity. Herein, we propose a high-capacity MnO2 cathode constructed by engineering it with N-doping (N-MnO[Formula: see text] for a high-performance Zn-MnO2 battery. Benefiting from N element doping, the conductivity of N-MnO2 nanorods (NRs) electrode has been improved and the dissolution of the cathode during cycling can be relieved to some extent. The fabricated Zn-N-MnO2 battery based on the N-MnO2 cathode and a Zn foil anode presents an a real capacity of 0.31[Formula: see text]mAh[Formula: see text]cm[Formula: see text] at 2[Formula: see text]mA[Formula: see text]cm[Formula: see text], together with a remarkable energy density of 154.3[Formula: see text]Wh[Formula: see text]kg[Formula: see text] and a peak power density of 6914.7[Formula: see text]W[Formula: see text]kg[Formula: see text], substantially higher than most recently reported energy storage devices. The strategy of N doping can also bring intensive interest for other electrode materials for energy storage systems.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信