多模态可解释特征阵列评估不同神经系统疾病的语言和言语模式

A. Favaro, C. Motley, Tianyu Cao, Miguel Iglesias, A. Butala, E. Oh, R. Stevens, J. Villalba, N. Dehak, L. Moro-Velázquez
{"title":"多模态可解释特征阵列评估不同神经系统疾病的语言和言语模式","authors":"A. Favaro, C. Motley, Tianyu Cao, Miguel Iglesias, A. Butala, E. Oh, R. Stevens, J. Villalba, N. Dehak, L. Moro-Velázquez","doi":"10.1109/SLT54892.2023.10022435","DOIUrl":null,"url":null,"abstract":"Speech-based automatic approaches for evaluating neurological disorders (NDs) depend on feature extraction before the classification pipeline. It is preferable for these features to be interpretable to facilitate their development as diagnostic tools. This study focuses on the analysis of interpretable features obtained from the spoken responses of 88 subjects with NDs and controls (CN). Subjects with NDs have Alzheimer's disease (AD), Parkinson's disease (PD), or Parkinson's disease mimics (PDM). We configured three complementary sets of features related to cognition, speech, and language, and conducted a statistical analysis to examine which features differed between NDs and CN. Results suggested that features capturing response informativeness, reaction times, vocabulary richness, and syntactic complexity provided separability between AD and CN. Similarly, fundamental frequency variability helped differentiate PD from CN, while the number of salient informational units PDM from CN.","PeriodicalId":352002,"journal":{"name":"2022 IEEE Spoken Language Technology Workshop (SLT)","volume":"75 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-01-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"A Multi-Modal Array of Interpretable Features to Evaluate Language and Speech Patterns in Different Neurological Disorders\",\"authors\":\"A. Favaro, C. Motley, Tianyu Cao, Miguel Iglesias, A. Butala, E. Oh, R. Stevens, J. Villalba, N. Dehak, L. Moro-Velázquez\",\"doi\":\"10.1109/SLT54892.2023.10022435\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Speech-based automatic approaches for evaluating neurological disorders (NDs) depend on feature extraction before the classification pipeline. It is preferable for these features to be interpretable to facilitate their development as diagnostic tools. This study focuses on the analysis of interpretable features obtained from the spoken responses of 88 subjects with NDs and controls (CN). Subjects with NDs have Alzheimer's disease (AD), Parkinson's disease (PD), or Parkinson's disease mimics (PDM). We configured three complementary sets of features related to cognition, speech, and language, and conducted a statistical analysis to examine which features differed between NDs and CN. Results suggested that features capturing response informativeness, reaction times, vocabulary richness, and syntactic complexity provided separability between AD and CN. Similarly, fundamental frequency variability helped differentiate PD from CN, while the number of salient informational units PDM from CN.\",\"PeriodicalId\":352002,\"journal\":{\"name\":\"2022 IEEE Spoken Language Technology Workshop (SLT)\",\"volume\":\"75 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-01-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 IEEE Spoken Language Technology Workshop (SLT)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SLT54892.2023.10022435\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE Spoken Language Technology Workshop (SLT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SLT54892.2023.10022435","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

基于语音的神经系统疾病自动评估方法依赖于分类管道前的特征提取。这些特性最好是可解释的,以促进它们作为诊断工具的开发。本研究着重分析了88名精神病患者和对照组(CN)的可解释特征。患有NDs的受试者患有阿尔茨海默病(AD)、帕金森病(PD)或帕金森病模拟(PDM)。我们配置了与认知、语音和语言相关的三组互补的特征,并进行了统计分析,以检查NDs和CN之间的哪些特征不同。结果表明,反应信息量、反应时间、词汇丰富度和句法复杂性等特征提供了AD和CN之间的可分离性。同样,基频变异性有助于区分PD和CN,而显著信息单位的数量有助于区分PDM和CN。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Multi-Modal Array of Interpretable Features to Evaluate Language and Speech Patterns in Different Neurological Disorders
Speech-based automatic approaches for evaluating neurological disorders (NDs) depend on feature extraction before the classification pipeline. It is preferable for these features to be interpretable to facilitate their development as diagnostic tools. This study focuses on the analysis of interpretable features obtained from the spoken responses of 88 subjects with NDs and controls (CN). Subjects with NDs have Alzheimer's disease (AD), Parkinson's disease (PD), or Parkinson's disease mimics (PDM). We configured three complementary sets of features related to cognition, speech, and language, and conducted a statistical analysis to examine which features differed between NDs and CN. Results suggested that features capturing response informativeness, reaction times, vocabulary richness, and syntactic complexity provided separability between AD and CN. Similarly, fundamental frequency variability helped differentiate PD from CN, while the number of salient informational units PDM from CN.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信