基于长短期记忆递归神经网络的上下文深度搜索

Mohammad Arifur Rahman, Fahad Ahmed, Nafis Ali
{"title":"基于长短期记忆递归神经网络的上下文深度搜索","authors":"Mohammad Arifur Rahman, Fahad Ahmed, Nafis Ali","doi":"10.1109/ICREST.2019.8644508","DOIUrl":null,"url":null,"abstract":"The internet is teeming with an ocean worth of information and combing through all that in order to find what one wants can become a daunting task if one does not possess the right tools and techniques. This paper explores one such technique, exploiting the rapidly responsive Long-Short Term Memory Recurrent Neural Networks (LSTM-RNNs) by harnessing the machine learning capabilities of neural networks and eventually, provides contextual search results at the finger tips of the user of the system.","PeriodicalId":108842,"journal":{"name":"2019 International Conference on Robotics,Electrical and Signal Processing Techniques (ICREST)","volume":"96 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Contextual Deep Search using Long Short Term Memory Recurrent Neural Network\",\"authors\":\"Mohammad Arifur Rahman, Fahad Ahmed, Nafis Ali\",\"doi\":\"10.1109/ICREST.2019.8644508\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The internet is teeming with an ocean worth of information and combing through all that in order to find what one wants can become a daunting task if one does not possess the right tools and techniques. This paper explores one such technique, exploiting the rapidly responsive Long-Short Term Memory Recurrent Neural Networks (LSTM-RNNs) by harnessing the machine learning capabilities of neural networks and eventually, provides contextual search results at the finger tips of the user of the system.\",\"PeriodicalId\":108842,\"journal\":{\"name\":\"2019 International Conference on Robotics,Electrical and Signal Processing Techniques (ICREST)\",\"volume\":\"96 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 International Conference on Robotics,Electrical and Signal Processing Techniques (ICREST)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICREST.2019.8644508\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 International Conference on Robotics,Electrical and Signal Processing Techniques (ICREST)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICREST.2019.8644508","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

互联网充满了海量的信息,如果一个人不具备合适的工具和技术,通过梳理所有这些信息来找到自己想要的东西可能会成为一项艰巨的任务。本文探讨了一种这样的技术,通过利用神经网络的机器学习能力,利用快速响应的长短期记忆递归神经网络(LSTM-RNNs),并最终在系统用户的指尖提供上下文搜索结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Contextual Deep Search using Long Short Term Memory Recurrent Neural Network
The internet is teeming with an ocean worth of information and combing through all that in order to find what one wants can become a daunting task if one does not possess the right tools and techniques. This paper explores one such technique, exploiting the rapidly responsive Long-Short Term Memory Recurrent Neural Networks (LSTM-RNNs) by harnessing the machine learning capabilities of neural networks and eventually, provides contextual search results at the finger tips of the user of the system.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信