{"title":"EvoTanks:游戏代理的共同进化发展","authors":"Thomas Thompson, J. Levine, G. Hayes","doi":"10.1109/CIG.2007.368116","DOIUrl":null,"url":null,"abstract":"This paper describes the EvoTanks research project, a continuing attempt to develop strong AI players for a primitive `combat' style video game using evolutionary computational methods with artificial neural networks. A small but challenging feat due to the necessity for agent's actions to rely heavily on opponent behaviour. Previous investigation has shown the agents are capable of developing high performance behaviours by evolving against scripted opponents; however these are local to the trained opponent. The focus of this paper shows results from the use of co-evolution on the same population. Results show agents no longer succumb to trappings of local maxima within the search space and are capable of converging on high fitness behaviours local to their population without the use of scripted opponents","PeriodicalId":365269,"journal":{"name":"2007 IEEE Symposium on Computational Intelligence and Games","volume":"75 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2007-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":"{\"title\":\"EvoTanks: Co-Evolutionary Development of Game-Playing Agents\",\"authors\":\"Thomas Thompson, J. Levine, G. Hayes\",\"doi\":\"10.1109/CIG.2007.368116\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper describes the EvoTanks research project, a continuing attempt to develop strong AI players for a primitive `combat' style video game using evolutionary computational methods with artificial neural networks. A small but challenging feat due to the necessity for agent's actions to rely heavily on opponent behaviour. Previous investigation has shown the agents are capable of developing high performance behaviours by evolving against scripted opponents; however these are local to the trained opponent. The focus of this paper shows results from the use of co-evolution on the same population. Results show agents no longer succumb to trappings of local maxima within the search space and are capable of converging on high fitness behaviours local to their population without the use of scripted opponents\",\"PeriodicalId\":365269,\"journal\":{\"name\":\"2007 IEEE Symposium on Computational Intelligence and Games\",\"volume\":\"75 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2007-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"9\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2007 IEEE Symposium on Computational Intelligence and Games\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CIG.2007.368116\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2007 IEEE Symposium on Computational Intelligence and Games","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CIG.2007.368116","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
EvoTanks: Co-Evolutionary Development of Game-Playing Agents
This paper describes the EvoTanks research project, a continuing attempt to develop strong AI players for a primitive `combat' style video game using evolutionary computational methods with artificial neural networks. A small but challenging feat due to the necessity for agent's actions to rely heavily on opponent behaviour. Previous investigation has shown the agents are capable of developing high performance behaviours by evolving against scripted opponents; however these are local to the trained opponent. The focus of this paper shows results from the use of co-evolution on the same population. Results show agents no longer succumb to trappings of local maxima within the search space and are capable of converging on high fitness behaviours local to their population without the use of scripted opponents