基于MPETM的城市功能区挖掘新方法

Fan Mou, Yong He, Jing Peng, Yi Ma, Ze-zhong Zheng, Shengli Wang, Jiang Li
{"title":"基于MPETM的城市功能区挖掘新方法","authors":"Fan Mou, Yong He, Jing Peng, Yi Ma, Ze-zhong Zheng, Shengli Wang, Jiang Li","doi":"10.1109/ICCWAMTIP.2018.8632580","DOIUrl":null,"url":null,"abstract":"Urban functional regions mining plays an important role in Smart Cities. At present, the main approaches to deal with this problem are probabilistic topic models. Some researchers also use deep learning methods to solve this problem. In this paper, we present a new method for urban functional regions mining called MPETM which combines deep learning and probabilistic topic models. Experiment results show that the MPETM framework has superior accuracy than other current popular methods.","PeriodicalId":117919,"journal":{"name":"2018 15th International Computer Conference on Wavelet Active Media Technology and Information Processing (ICCWAMTIP)","volume":"87 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A New Urban Functional Regions Minig Method with MPETM\",\"authors\":\"Fan Mou, Yong He, Jing Peng, Yi Ma, Ze-zhong Zheng, Shengli Wang, Jiang Li\",\"doi\":\"10.1109/ICCWAMTIP.2018.8632580\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Urban functional regions mining plays an important role in Smart Cities. At present, the main approaches to deal with this problem are probabilistic topic models. Some researchers also use deep learning methods to solve this problem. In this paper, we present a new method for urban functional regions mining called MPETM which combines deep learning and probabilistic topic models. Experiment results show that the MPETM framework has superior accuracy than other current popular methods.\",\"PeriodicalId\":117919,\"journal\":{\"name\":\"2018 15th International Computer Conference on Wavelet Active Media Technology and Information Processing (ICCWAMTIP)\",\"volume\":\"87 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 15th International Computer Conference on Wavelet Active Media Technology and Information Processing (ICCWAMTIP)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICCWAMTIP.2018.8632580\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 15th International Computer Conference on Wavelet Active Media Technology and Information Processing (ICCWAMTIP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCWAMTIP.2018.8632580","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

城市功能区挖掘是智慧城市的重要组成部分。目前,处理这一问题的主要方法是概率主题模型。一些研究人员也使用深度学习方法来解决这个问题。本文提出了一种结合深度学习和概率主题模型的城市功能区挖掘新方法MPETM。实验结果表明,MPETM框架比目前流行的其他方法具有更高的精度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A New Urban Functional Regions Minig Method with MPETM
Urban functional regions mining plays an important role in Smart Cities. At present, the main approaches to deal with this problem are probabilistic topic models. Some researchers also use deep learning methods to solve this problem. In this paper, we present a new method for urban functional regions mining called MPETM which combines deep learning and probabilistic topic models. Experiment results show that the MPETM framework has superior accuracy than other current popular methods.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信