{"title":"再现核空间中的分支问题","authors":"B. Orsted, J. Vargas","doi":"10.1215/00127094-2020-0032","DOIUrl":null,"url":null,"abstract":"For a semisimple Lie group $G$ satisfying the equal rank condition, the most basic family of unitary irreducible representations is the discrete series found by Harish-Chandra. In this paper, we study some of the branching laws for discrete series when restricted to a subgroup $H$ of the same type by combining classical results with recent work of T. Kobayashi; in particular, we prove discrete decomposability under Harish-Chandra's condition of cusp form on the reproducing kernel. We show a relation between discrete decomposability and representing certain intertwining operators in terms of differential operators.","PeriodicalId":275006,"journal":{"name":"arXiv: Representation Theory","volume":"27 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-06-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Branching problems in reproducing kernel spaces\",\"authors\":\"B. Orsted, J. Vargas\",\"doi\":\"10.1215/00127094-2020-0032\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"For a semisimple Lie group $G$ satisfying the equal rank condition, the most basic family of unitary irreducible representations is the discrete series found by Harish-Chandra. In this paper, we study some of the branching laws for discrete series when restricted to a subgroup $H$ of the same type by combining classical results with recent work of T. Kobayashi; in particular, we prove discrete decomposability under Harish-Chandra's condition of cusp form on the reproducing kernel. We show a relation between discrete decomposability and representing certain intertwining operators in terms of differential operators.\",\"PeriodicalId\":275006,\"journal\":{\"name\":\"arXiv: Representation Theory\",\"volume\":\"27 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-06-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv: Representation Theory\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1215/00127094-2020-0032\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv: Representation Theory","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1215/00127094-2020-0032","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
For a semisimple Lie group $G$ satisfying the equal rank condition, the most basic family of unitary irreducible representations is the discrete series found by Harish-Chandra. In this paper, we study some of the branching laws for discrete series when restricted to a subgroup $H$ of the same type by combining classical results with recent work of T. Kobayashi; in particular, we prove discrete decomposability under Harish-Chandra's condition of cusp form on the reproducing kernel. We show a relation between discrete decomposability and representing certain intertwining operators in terms of differential operators.