生物特征表示攻击检测的非参考图像质量评估

Amrit Pal Singh Bhogal, Dominik Söllinger, P. Trung, A. Uhl
{"title":"生物特征表示攻击检测的非参考图像质量评估","authors":"Amrit Pal Singh Bhogal, Dominik Söllinger, P. Trung, A. Uhl","doi":"10.1109/IWBF.2017.7935080","DOIUrl":null,"url":null,"abstract":"Non-reference image quality measures are used to distinguish real biometric data from data as used in presentation / sensor spoofing attacks. An experimental study shows that based on a set of 6 such measures, classification of real vs. fake iris, fingerprint, and face data is feasible with an accuracy of 90% on average. However, we have found that the best quality measure (combination) and classification setting highly depends on the target dataset. Thus, we are unable to provide any other recommendation than to optimise the choice of quality measure and classification setting for each specific application setting.","PeriodicalId":111316,"journal":{"name":"2017 5th International Workshop on Biometrics and Forensics (IWBF)","volume":"6 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-04-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"17","resultStr":"{\"title\":\"Non-reference image quality assessment for biometric presentation attack detection\",\"authors\":\"Amrit Pal Singh Bhogal, Dominik Söllinger, P. Trung, A. Uhl\",\"doi\":\"10.1109/IWBF.2017.7935080\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Non-reference image quality measures are used to distinguish real biometric data from data as used in presentation / sensor spoofing attacks. An experimental study shows that based on a set of 6 such measures, classification of real vs. fake iris, fingerprint, and face data is feasible with an accuracy of 90% on average. However, we have found that the best quality measure (combination) and classification setting highly depends on the target dataset. Thus, we are unable to provide any other recommendation than to optimise the choice of quality measure and classification setting for each specific application setting.\",\"PeriodicalId\":111316,\"journal\":{\"name\":\"2017 5th International Workshop on Biometrics and Forensics (IWBF)\",\"volume\":\"6 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-04-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"17\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 5th International Workshop on Biometrics and Forensics (IWBF)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IWBF.2017.7935080\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 5th International Workshop on Biometrics and Forensics (IWBF)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IWBF.2017.7935080","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 17

摘要

非参考图像质量度量用于区分真实生物特征数据和用于演示/传感器欺骗攻击的数据。一项实验研究表明,基于6个这样的度量,虹膜、指纹和人脸数据的真假分类是可行的,平均准确率为90%。然而,我们发现最好的质量度量(组合)和分类设置高度依赖于目标数据集。因此,我们无法提供任何其他建议,而不是优化每个特定应用程序设置的质量度量和分类设置的选择。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Non-reference image quality assessment for biometric presentation attack detection
Non-reference image quality measures are used to distinguish real biometric data from data as used in presentation / sensor spoofing attacks. An experimental study shows that based on a set of 6 such measures, classification of real vs. fake iris, fingerprint, and face data is feasible with an accuracy of 90% on average. However, we have found that the best quality measure (combination) and classification setting highly depends on the target dataset. Thus, we are unable to provide any other recommendation than to optimise the choice of quality measure and classification setting for each specific application setting.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信