多跳设备到设备网络中的设备感知路由和调度

Yuxuan Xing, H. Seferoglu
{"title":"多跳设备到设备网络中的设备感知路由和调度","authors":"Yuxuan Xing, H. Seferoglu","doi":"10.1109/ITA.2017.8023471","DOIUrl":null,"url":null,"abstract":"The dramatic increase in data and connectivity demand, in addition to heterogeneous device capabilities, poses a challenge for future wireless networks. One of the promising solutions is Device-to-Device (D2D) networking. D2D networking, advocating the idea of connecting two or more devices directly without traversing the core network, is promising to address the increasing data and connectivity demand. In this paper, we consider D2D networks, where devices with heterogeneous capabilities including computing power, energy limitations, and incentives participate in D2D activities heterogeneously. We develop (i) a device-aware routing and scheduling algorithm (DARS) by taking into account device capabilities, and (ii) a multi-hop D2D testbed using Android-based smartphones and tablets by exploiting Wi-Fi Direct and legacy Wi-Fi connections. We show that DARS significantly improves throughput in our testbed as compared to state-of-the-art.","PeriodicalId":305510,"journal":{"name":"2017 Information Theory and Applications Workshop (ITA)","volume":"44 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Device-aware routing and scheduling in multi-hop Device-to-Device networks\",\"authors\":\"Yuxuan Xing, H. Seferoglu\",\"doi\":\"10.1109/ITA.2017.8023471\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The dramatic increase in data and connectivity demand, in addition to heterogeneous device capabilities, poses a challenge for future wireless networks. One of the promising solutions is Device-to-Device (D2D) networking. D2D networking, advocating the idea of connecting two or more devices directly without traversing the core network, is promising to address the increasing data and connectivity demand. In this paper, we consider D2D networks, where devices with heterogeneous capabilities including computing power, energy limitations, and incentives participate in D2D activities heterogeneously. We develop (i) a device-aware routing and scheduling algorithm (DARS) by taking into account device capabilities, and (ii) a multi-hop D2D testbed using Android-based smartphones and tablets by exploiting Wi-Fi Direct and legacy Wi-Fi connections. We show that DARS significantly improves throughput in our testbed as compared to state-of-the-art.\",\"PeriodicalId\":305510,\"journal\":{\"name\":\"2017 Information Theory and Applications Workshop (ITA)\",\"volume\":\"44 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-02-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 Information Theory and Applications Workshop (ITA)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ITA.2017.8023471\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 Information Theory and Applications Workshop (ITA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ITA.2017.8023471","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

数据和连接需求的急剧增加,以及异构设备功能,对未来的无线网络提出了挑战。一个很有前途的解决方案是设备到设备(D2D)网络。D2D网络提倡直接连接两个或多个设备,而无需穿越核心网络,有望解决日益增长的数据和连接需求。在本文中,我们考虑了D2D网络,其中具有异构能力(包括计算能力、能量限制和激励)的设备以异构方式参与D2D活动。我们开发了(i)考虑到设备功能的设备感知路由和调度算法(DARS),以及(ii)通过利用Wi-Fi Direct和传统Wi-Fi连接,使用基于android的智能手机和平板电脑的多跳D2D测试平台。我们表明,与最先进的技术相比,DARS显著提高了我们测试平台中的吞吐量。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Device-aware routing and scheduling in multi-hop Device-to-Device networks
The dramatic increase in data and connectivity demand, in addition to heterogeneous device capabilities, poses a challenge for future wireless networks. One of the promising solutions is Device-to-Device (D2D) networking. D2D networking, advocating the idea of connecting two or more devices directly without traversing the core network, is promising to address the increasing data and connectivity demand. In this paper, we consider D2D networks, where devices with heterogeneous capabilities including computing power, energy limitations, and incentives participate in D2D activities heterogeneously. We develop (i) a device-aware routing and scheduling algorithm (DARS) by taking into account device capabilities, and (ii) a multi-hop D2D testbed using Android-based smartphones and tablets by exploiting Wi-Fi Direct and legacy Wi-Fi connections. We show that DARS significantly improves throughput in our testbed as compared to state-of-the-art.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信