智能服装设计的深度3D人体地标估计

A. Baronetto, Dominik Wassermann, O. Amft
{"title":"智能服装设计的深度3D人体地标估计","authors":"A. Baronetto, Dominik Wassermann, O. Amft","doi":"10.1109/BSN51625.2021.9507035","DOIUrl":null,"url":null,"abstract":"We propose a framework to automatically extract body landmarks and related measurements from 3D body scans and replace manual body shape estimation in fitting smart garments. Our framework comprises five steps: 3D scan acquisition and segmentation, 2D image conversion, extraction of body landmarks using a Convolutional Neural Network (CNN), back projection and mapping of extracted landmarks to 3D space, body measurements estimation and tailored garment generation. We trained and tested the algorithm on 3000 synthetic 3D body models and estimated body landmarks required for T-Shirt design. The results show that the algorithm can successfully extract 3D body landmarks of the upper front with a mean error of 1.01 cm and of the upper back with a mean error of 0.78 cm. We validated the framework the framework in automated tailoring of an electrocardiogram (ECG)-monitoring shirt based on the predicted landmarks. The ECG shirt can fit all evaluated body shapes with an average electrode-skin distance of 0.61 cm.","PeriodicalId":181520,"journal":{"name":"2021 IEEE 17th International Conference on Wearable and Implantable Body Sensor Networks (BSN)","volume":"44 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-07-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Deep 3D Body Landmarks Estimation for Smart Garments Design\",\"authors\":\"A. Baronetto, Dominik Wassermann, O. Amft\",\"doi\":\"10.1109/BSN51625.2021.9507035\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We propose a framework to automatically extract body landmarks and related measurements from 3D body scans and replace manual body shape estimation in fitting smart garments. Our framework comprises five steps: 3D scan acquisition and segmentation, 2D image conversion, extraction of body landmarks using a Convolutional Neural Network (CNN), back projection and mapping of extracted landmarks to 3D space, body measurements estimation and tailored garment generation. We trained and tested the algorithm on 3000 synthetic 3D body models and estimated body landmarks required for T-Shirt design. The results show that the algorithm can successfully extract 3D body landmarks of the upper front with a mean error of 1.01 cm and of the upper back with a mean error of 0.78 cm. We validated the framework the framework in automated tailoring of an electrocardiogram (ECG)-monitoring shirt based on the predicted landmarks. The ECG shirt can fit all evaluated body shapes with an average electrode-skin distance of 0.61 cm.\",\"PeriodicalId\":181520,\"journal\":{\"name\":\"2021 IEEE 17th International Conference on Wearable and Implantable Body Sensor Networks (BSN)\",\"volume\":\"44 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-07-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 IEEE 17th International Conference on Wearable and Implantable Body Sensor Networks (BSN)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/BSN51625.2021.9507035\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE 17th International Conference on Wearable and Implantable Body Sensor Networks (BSN)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/BSN51625.2021.9507035","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

我们提出了一个框架,从3D身体扫描中自动提取身体标志和相关测量,并取代人工身形估计,以适应智能服装。我们的框架包括五个步骤:3D扫描采集和分割,2D图像转换,使用卷积神经网络(CNN)提取身体地标,提取的地标到3D空间的反向投影和映射,身体测量估计和定制服装生成。我们在3000个合成3D人体模型上训练和测试了该算法,并估计了t恤设计所需的身体地标。结果表明,该算法能够成功提取上正面和上背部的三维人体标志,平均误差分别为1.01 cm和0.78 cm。我们验证了该框架,该框架基于预测的地标自动剪裁心电图(ECG)监测衬衫。这种ECG衬衫适合所有被评估的体型,电极与皮肤的平均距离为0.61厘米。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Deep 3D Body Landmarks Estimation for Smart Garments Design
We propose a framework to automatically extract body landmarks and related measurements from 3D body scans and replace manual body shape estimation in fitting smart garments. Our framework comprises five steps: 3D scan acquisition and segmentation, 2D image conversion, extraction of body landmarks using a Convolutional Neural Network (CNN), back projection and mapping of extracted landmarks to 3D space, body measurements estimation and tailored garment generation. We trained and tested the algorithm on 3000 synthetic 3D body models and estimated body landmarks required for T-Shirt design. The results show that the algorithm can successfully extract 3D body landmarks of the upper front with a mean error of 1.01 cm and of the upper back with a mean error of 0.78 cm. We validated the framework the framework in automated tailoring of an electrocardiogram (ECG)-monitoring shirt based on the predicted landmarks. The ECG shirt can fit all evaluated body shapes with an average electrode-skin distance of 0.61 cm.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信