T. Peterka, David Goodell, R. Ross, Han-Wei Shen, R. Thakur
{"title":"并行图像合成应用的可配置算法","authors":"T. Peterka, David Goodell, R. Ross, Han-Wei Shen, R. Thakur","doi":"10.1145/1654059.1654064","DOIUrl":null,"url":null,"abstract":"Collective communication operations can dominate the cost of large-scale parallel algorithms. Image compositing in parallel scientific visualization is a reduction operation where this is the case. We present a new algorithm called Radix-k that in many cases performs better than existing compositing algorithms. It does so through a set of configurable parameters, the radices, that determine the number of communication partners in each message round. The algorithm embodies and unifies binary swap and direct-send, two of the best-known compositing methods, and enables numerous other configurations through appropriate choices of radices. While the algorithm is not tied to a particular computing architecture or network topology, the selection of radices allows Radix-k to take advantage of new supercomputer interconnect features such as multiporting. We show scalability across image size and system size, including both powers of two and nonpowers-of-two process counts.","PeriodicalId":371415,"journal":{"name":"Proceedings of the Conference on High Performance Computing Networking, Storage and Analysis","volume":"39 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-11-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"79","resultStr":"{\"title\":\"A configurable algorithm for parallel image-compositing applications\",\"authors\":\"T. Peterka, David Goodell, R. Ross, Han-Wei Shen, R. Thakur\",\"doi\":\"10.1145/1654059.1654064\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Collective communication operations can dominate the cost of large-scale parallel algorithms. Image compositing in parallel scientific visualization is a reduction operation where this is the case. We present a new algorithm called Radix-k that in many cases performs better than existing compositing algorithms. It does so through a set of configurable parameters, the radices, that determine the number of communication partners in each message round. The algorithm embodies and unifies binary swap and direct-send, two of the best-known compositing methods, and enables numerous other configurations through appropriate choices of radices. While the algorithm is not tied to a particular computing architecture or network topology, the selection of radices allows Radix-k to take advantage of new supercomputer interconnect features such as multiporting. We show scalability across image size and system size, including both powers of two and nonpowers-of-two process counts.\",\"PeriodicalId\":371415,\"journal\":{\"name\":\"Proceedings of the Conference on High Performance Computing Networking, Storage and Analysis\",\"volume\":\"39 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2009-11-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"79\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the Conference on High Performance Computing Networking, Storage and Analysis\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/1654059.1654064\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Conference on High Performance Computing Networking, Storage and Analysis","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/1654059.1654064","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A configurable algorithm for parallel image-compositing applications
Collective communication operations can dominate the cost of large-scale parallel algorithms. Image compositing in parallel scientific visualization is a reduction operation where this is the case. We present a new algorithm called Radix-k that in many cases performs better than existing compositing algorithms. It does so through a set of configurable parameters, the radices, that determine the number of communication partners in each message round. The algorithm embodies and unifies binary swap and direct-send, two of the best-known compositing methods, and enables numerous other configurations through appropriate choices of radices. While the algorithm is not tied to a particular computing architecture or network topology, the selection of radices allows Radix-k to take advantage of new supercomputer interconnect features such as multiporting. We show scalability across image size and system size, including both powers of two and nonpowers-of-two process counts.