{"title":"使用微扰模型的实体组织幻影的时间分辨成像","authors":"J. Hebden, S. Arridge","doi":"10.1364/aoipm.1996.trit93","DOIUrl":null,"url":null,"abstract":"Measurements of the time-dependent intensity of transmitted light through a highly scattering tissue phantom have been compared with an analytical model which describes the sensitivity of that intensity to localized changes in optical properties. A least-squares fitting procedure is employed to investigate the accuracy with which the model can predict the true displacement between a single embedded inhomogeneity and the line-of-sight across the phantom. The embedded object has twice the scatter and absorption coefficient of the surrounding medium. A further fitting procedure was used to derive the amplitudes of the measurement perturbations as the line-of-sight is translated towards the inhomogeneity. Results show that the diffusion perturbation amplitude provides inherently greater spatial resolution than the absorption perturbation amplitude.","PeriodicalId":368664,"journal":{"name":"Advances in Optical Imaging and Photon Migration","volume":"39 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Time-Resolved Imaging of Solid Tissue Phantoms Using a Perturbation Model\",\"authors\":\"J. Hebden, S. Arridge\",\"doi\":\"10.1364/aoipm.1996.trit93\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Measurements of the time-dependent intensity of transmitted light through a highly scattering tissue phantom have been compared with an analytical model which describes the sensitivity of that intensity to localized changes in optical properties. A least-squares fitting procedure is employed to investigate the accuracy with which the model can predict the true displacement between a single embedded inhomogeneity and the line-of-sight across the phantom. The embedded object has twice the scatter and absorption coefficient of the surrounding medium. A further fitting procedure was used to derive the amplitudes of the measurement perturbations as the line-of-sight is translated towards the inhomogeneity. Results show that the diffusion perturbation amplitude provides inherently greater spatial resolution than the absorption perturbation amplitude.\",\"PeriodicalId\":368664,\"journal\":{\"name\":\"Advances in Optical Imaging and Photon Migration\",\"volume\":\"39 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1900-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advances in Optical Imaging and Photon Migration\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1364/aoipm.1996.trit93\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Optical Imaging and Photon Migration","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1364/aoipm.1996.trit93","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Time-Resolved Imaging of Solid Tissue Phantoms Using a Perturbation Model
Measurements of the time-dependent intensity of transmitted light through a highly scattering tissue phantom have been compared with an analytical model which describes the sensitivity of that intensity to localized changes in optical properties. A least-squares fitting procedure is employed to investigate the accuracy with which the model can predict the true displacement between a single embedded inhomogeneity and the line-of-sight across the phantom. The embedded object has twice the scatter and absorption coefficient of the surrounding medium. A further fitting procedure was used to derive the amplitudes of the measurement perturbations as the line-of-sight is translated towards the inhomogeneity. Results show that the diffusion perturbation amplitude provides inherently greater spatial resolution than the absorption perturbation amplitude.