{"title":"结合主动和被动感知与环境无关分类器的位置语义预测","authors":"Masaya Tachikawa, T. Maekawa, Y. Matsushita","doi":"10.1145/2971648.2971684","DOIUrl":null,"url":null,"abstract":"This paper presents a method for estimating a user's indoor location without using training data collected by the user in his/her environment. Specifically, we attempt to predict the user's location semantics, i.e., location classes such as restroom and meeting room. While indoor location information can be used in many real-world services, e.g., context-aware systems, lifelogging, and monitoring the elderly, estimating the location information requires training data collected in an environment of interest. In this study, we combine passive sensing and active sound probing to capture and learn inherent sensor data features for each location class using labeled training data collected in other environments. In addition, this study modifies the random forest algorithm to effectively extract inherent sensor data features for each location class. Our evaluation showed that our method achieved about 85% accuracy without using training data collected in test environments.","PeriodicalId":303792,"journal":{"name":"Proceedings of the 2016 ACM International Joint Conference on Pervasive and Ubiquitous Computing","volume":"217 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"19","resultStr":"{\"title\":\"Predicting location semantics combining active and passive sensing with environment-independent classifier\",\"authors\":\"Masaya Tachikawa, T. Maekawa, Y. Matsushita\",\"doi\":\"10.1145/2971648.2971684\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents a method for estimating a user's indoor location without using training data collected by the user in his/her environment. Specifically, we attempt to predict the user's location semantics, i.e., location classes such as restroom and meeting room. While indoor location information can be used in many real-world services, e.g., context-aware systems, lifelogging, and monitoring the elderly, estimating the location information requires training data collected in an environment of interest. In this study, we combine passive sensing and active sound probing to capture and learn inherent sensor data features for each location class using labeled training data collected in other environments. In addition, this study modifies the random forest algorithm to effectively extract inherent sensor data features for each location class. Our evaluation showed that our method achieved about 85% accuracy without using training data collected in test environments.\",\"PeriodicalId\":303792,\"journal\":{\"name\":\"Proceedings of the 2016 ACM International Joint Conference on Pervasive and Ubiquitous Computing\",\"volume\":\"217 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-09-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"19\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 2016 ACM International Joint Conference on Pervasive and Ubiquitous Computing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/2971648.2971684\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2016 ACM International Joint Conference on Pervasive and Ubiquitous Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2971648.2971684","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Predicting location semantics combining active and passive sensing with environment-independent classifier
This paper presents a method for estimating a user's indoor location without using training data collected by the user in his/her environment. Specifically, we attempt to predict the user's location semantics, i.e., location classes such as restroom and meeting room. While indoor location information can be used in many real-world services, e.g., context-aware systems, lifelogging, and monitoring the elderly, estimating the location information requires training data collected in an environment of interest. In this study, we combine passive sensing and active sound probing to capture and learn inherent sensor data features for each location class using labeled training data collected in other environments. In addition, this study modifies the random forest algorithm to effectively extract inherent sensor data features for each location class. Our evaluation showed that our method achieved about 85% accuracy without using training data collected in test environments.