Yufeng Xing, Lei Guo, Zongchao Xie, Lei Cui, Longxiang Gao, Shui Yu
{"title":"智能电网非技术损耗检测:集成数据驱动方法","authors":"Yufeng Xing, Lei Guo, Zongchao Xie, Lei Cui, Longxiang Gao, Shui Yu","doi":"10.1109/ICPADS51040.2020.00078","DOIUrl":null,"url":null,"abstract":"Non technical losses (NTL) detection plays a crucial role in protecting the security of smart grids. Employing massive energy consumption data and advanced artificial intelligence (AI) techniques for NTL detection are helpful. However, there are concerns regarding the effectiveness of existing AI-based detectors against covert attack methods. In particular, the tampered metering data with normal consumption patterns may result in low detection rate. Motivated by this, we propose a hybrid data-driven detection framework. In particular, we introduce a wide & deep convolutional neural networks (CNN) model to capture the global and periodic features of consumption data. We also leverage the maximal information coefficient algorithm to analysis and detect those covert abnormal measurements. Our extensive experiments under different attack scenarios demonstrate the effectiveness of the proposed method.","PeriodicalId":196548,"journal":{"name":"2020 IEEE 26th International Conference on Parallel and Distributed Systems (ICPADS)","volume":"52 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Non-Technical Losses Detection in Smart Grids: An Ensemble Data-Driven Approach\",\"authors\":\"Yufeng Xing, Lei Guo, Zongchao Xie, Lei Cui, Longxiang Gao, Shui Yu\",\"doi\":\"10.1109/ICPADS51040.2020.00078\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Non technical losses (NTL) detection plays a crucial role in protecting the security of smart grids. Employing massive energy consumption data and advanced artificial intelligence (AI) techniques for NTL detection are helpful. However, there are concerns regarding the effectiveness of existing AI-based detectors against covert attack methods. In particular, the tampered metering data with normal consumption patterns may result in low detection rate. Motivated by this, we propose a hybrid data-driven detection framework. In particular, we introduce a wide & deep convolutional neural networks (CNN) model to capture the global and periodic features of consumption data. We also leverage the maximal information coefficient algorithm to analysis and detect those covert abnormal measurements. Our extensive experiments under different attack scenarios demonstrate the effectiveness of the proposed method.\",\"PeriodicalId\":196548,\"journal\":{\"name\":\"2020 IEEE 26th International Conference on Parallel and Distributed Systems (ICPADS)\",\"volume\":\"52 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 IEEE 26th International Conference on Parallel and Distributed Systems (ICPADS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICPADS51040.2020.00078\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE 26th International Conference on Parallel and Distributed Systems (ICPADS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICPADS51040.2020.00078","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Non-Technical Losses Detection in Smart Grids: An Ensemble Data-Driven Approach
Non technical losses (NTL) detection plays a crucial role in protecting the security of smart grids. Employing massive energy consumption data and advanced artificial intelligence (AI) techniques for NTL detection are helpful. However, there are concerns regarding the effectiveness of existing AI-based detectors against covert attack methods. In particular, the tampered metering data with normal consumption patterns may result in low detection rate. Motivated by this, we propose a hybrid data-driven detection framework. In particular, we introduce a wide & deep convolutional neural networks (CNN) model to capture the global and periodic features of consumption data. We also leverage the maximal information coefficient algorithm to analysis and detect those covert abnormal measurements. Our extensive experiments under different attack scenarios demonstrate the effectiveness of the proposed method.