大型非负约束最小二乘问题的性能优化及其在生物物理中的应用

E. Brookes, B. Demeler
{"title":"大型非负约束最小二乘问题的性能优化及其在生物物理中的应用","authors":"E. Brookes, B. Demeler","doi":"10.1145/1838574.1838579","DOIUrl":null,"url":null,"abstract":"Solving large non-negatively constrained least squares systems is frequently used in the physical sciences to estimate model parameters which best fit experimental data. Analytical Ultracentrifugation (AUC) is an important hydrodynamic experimental technique used in biophysics to characterize macromolecules and to determine parameters such as molecular weight and shape. We previously developed a parallel divide and conquer method to facilitate solving the large systems obtained from AUC experiments. New AUC instruments equipped with multi-wavelength (MWL) detectors have recently increased the data sizes by three orders of magnitude. Analyzing the MWL data requires significant compute resources. To better utilize these resources, we introduce a procedure allowing the researcher to optimize the divide and conquer scheme along a continuum from minimum wall time to minimum compute service units. We achieve our results by implementing a preprocessing stage performed on a local workstation before job submission.","PeriodicalId":257555,"journal":{"name":"TeraGrid Conference","volume":"298 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-08-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Performance optimization of large non-negatively constrained least squares problems with an application in biophysics\",\"authors\":\"E. Brookes, B. Demeler\",\"doi\":\"10.1145/1838574.1838579\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Solving large non-negatively constrained least squares systems is frequently used in the physical sciences to estimate model parameters which best fit experimental data. Analytical Ultracentrifugation (AUC) is an important hydrodynamic experimental technique used in biophysics to characterize macromolecules and to determine parameters such as molecular weight and shape. We previously developed a parallel divide and conquer method to facilitate solving the large systems obtained from AUC experiments. New AUC instruments equipped with multi-wavelength (MWL) detectors have recently increased the data sizes by three orders of magnitude. Analyzing the MWL data requires significant compute resources. To better utilize these resources, we introduce a procedure allowing the researcher to optimize the divide and conquer scheme along a continuum from minimum wall time to minimum compute service units. We achieve our results by implementing a preprocessing stage performed on a local workstation before job submission.\",\"PeriodicalId\":257555,\"journal\":{\"name\":\"TeraGrid Conference\",\"volume\":\"298 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-08-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"TeraGrid Conference\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/1838574.1838579\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"TeraGrid Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/1838574.1838579","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

求解大型非负约束最小二乘系统在物理科学中经常被用来估计最适合实验数据的模型参数。分析超离心(AUC)是一种重要的流体力学实验技术,用于生物物理学中表征大分子和确定分子量和形状等参数。我们之前开发了一种并行分治方法,以方便求解从AUC实验中获得的大型系统。配备多波长(MWL)探测器的新型AUC仪器最近将数据量增加了三个数量级。分析MWL数据需要大量的计算资源。为了更好地利用这些资源,我们引入了一个程序,允许研究人员沿着从最小墙时间到最小计算服务单元的连续体优化分而治之方案。我们通过在作业提交之前在本地工作站执行预处理阶段来实现我们的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Performance optimization of large non-negatively constrained least squares problems with an application in biophysics
Solving large non-negatively constrained least squares systems is frequently used in the physical sciences to estimate model parameters which best fit experimental data. Analytical Ultracentrifugation (AUC) is an important hydrodynamic experimental technique used in biophysics to characterize macromolecules and to determine parameters such as molecular weight and shape. We previously developed a parallel divide and conquer method to facilitate solving the large systems obtained from AUC experiments. New AUC instruments equipped with multi-wavelength (MWL) detectors have recently increased the data sizes by three orders of magnitude. Analyzing the MWL data requires significant compute resources. To better utilize these resources, we introduce a procedure allowing the researcher to optimize the divide and conquer scheme along a continuum from minimum wall time to minimum compute service units. We achieve our results by implementing a preprocessing stage performed on a local workstation before job submission.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信