{"title":"仿生自测试和自组织位片处理器","authors":"A. Stauffer, J. Rossier","doi":"10.1109/ReConFig.2009.10","DOIUrl":null,"url":null,"abstract":"Inspired by the basic processes of molecular biology, our previous studies resulted in defining self-testing and self-organizing mechanisms made up of simple processes. The goal of our paper is to introduce a configurable molecule able to implement these bio-inspired mechanisms as well as their underlying processes. The hardware description of the molecule leads to the simulation of a multiplier designed as a one-dimensional organism dedicated to bit slice processors.","PeriodicalId":325631,"journal":{"name":"2009 International Conference on Reconfigurable Computing and FPGAs","volume":"180 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-12-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Bio-inspired Self-Testing and Self-Organizing Bit Slice Processors\",\"authors\":\"A. Stauffer, J. Rossier\",\"doi\":\"10.1109/ReConFig.2009.10\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Inspired by the basic processes of molecular biology, our previous studies resulted in defining self-testing and self-organizing mechanisms made up of simple processes. The goal of our paper is to introduce a configurable molecule able to implement these bio-inspired mechanisms as well as their underlying processes. The hardware description of the molecule leads to the simulation of a multiplier designed as a one-dimensional organism dedicated to bit slice processors.\",\"PeriodicalId\":325631,\"journal\":{\"name\":\"2009 International Conference on Reconfigurable Computing and FPGAs\",\"volume\":\"180 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2009-12-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2009 International Conference on Reconfigurable Computing and FPGAs\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ReConFig.2009.10\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 International Conference on Reconfigurable Computing and FPGAs","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ReConFig.2009.10","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Bio-inspired Self-Testing and Self-Organizing Bit Slice Processors
Inspired by the basic processes of molecular biology, our previous studies resulted in defining self-testing and self-organizing mechanisms made up of simple processes. The goal of our paper is to introduce a configurable molecule able to implement these bio-inspired mechanisms as well as their underlying processes. The hardware description of the molecule leads to the simulation of a multiplier designed as a one-dimensional organism dedicated to bit slice processors.