超文本表示的张量空间模型

S. Saha, C. A. Murthy, S. Pal
{"title":"超文本表示的张量空间模型","authors":"S. Saha, C. A. Murthy, S. Pal","doi":"10.1109/ICIT.2008.13","DOIUrl":null,"url":null,"abstract":"We investigate the basics of tensor based hypertext representation and perform experiments this novel hypertext representation model. Most documents have an inherent hierarchical structure that render the desirable use of multidimensional representations such as those offered by tensor objects. We focus on the advantages of Tensor Space Model, in which documents are represented using second-order tensors. We exploit the local-structure and neighborhood recommendation encapsulated by the proposed representation. We define the distance metric on tensor space of hypertext documents, which is a generalization of distance metric defined on vector space model. Our results provide evidence that tensor based model is very efficient for clustering and classification of hypertext documents compared to traditional vector based model.","PeriodicalId":184201,"journal":{"name":"2008 International Conference on Information Technology","volume":"38 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2008-12-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Tensor Space Model for Hypertext Representation\",\"authors\":\"S. Saha, C. A. Murthy, S. Pal\",\"doi\":\"10.1109/ICIT.2008.13\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We investigate the basics of tensor based hypertext representation and perform experiments this novel hypertext representation model. Most documents have an inherent hierarchical structure that render the desirable use of multidimensional representations such as those offered by tensor objects. We focus on the advantages of Tensor Space Model, in which documents are represented using second-order tensors. We exploit the local-structure and neighborhood recommendation encapsulated by the proposed representation. We define the distance metric on tensor space of hypertext documents, which is a generalization of distance metric defined on vector space model. Our results provide evidence that tensor based model is very efficient for clustering and classification of hypertext documents compared to traditional vector based model.\",\"PeriodicalId\":184201,\"journal\":{\"name\":\"2008 International Conference on Information Technology\",\"volume\":\"38 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2008-12-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2008 International Conference on Information Technology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICIT.2008.13\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2008 International Conference on Information Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICIT.2008.13","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

我们研究了基于张量的超文本表示的基础,并对这种新的超文本表示模型进行了实验。大多数文档都有一个固有的层次结构,它提供了多维表示的理想使用,比如由张量对象提供的多维表示。我们重点介绍了张量空间模型的优点,其中文档使用二阶张量表示。我们利用所提出的表示封装的局部结构和邻域推荐。本文定义了超文本文档在张量空间上的距离度量,它是在向量空间模型上定义的距离度量的推广。研究结果表明,与传统的基于向量的模型相比,基于张量的模型对超文本文档的聚类和分类非常有效。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Tensor Space Model for Hypertext Representation
We investigate the basics of tensor based hypertext representation and perform experiments this novel hypertext representation model. Most documents have an inherent hierarchical structure that render the desirable use of multidimensional representations such as those offered by tensor objects. We focus on the advantages of Tensor Space Model, in which documents are represented using second-order tensors. We exploit the local-structure and neighborhood recommendation encapsulated by the proposed representation. We define the distance metric on tensor space of hypertext documents, which is a generalization of distance metric defined on vector space model. Our results provide evidence that tensor based model is very efficient for clustering and classification of hypertext documents compared to traditional vector based model.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信