Ziming Liu, Song Guo, Xiaocheng Lu, Jingcai Guo, Jiewei Zhang, Yue Zeng, Fushuo Huo
{"title":"(ML) 2p -编码器:多标签零次学习的通道类相关研究","authors":"Ziming Liu, Song Guo, Xiaocheng Lu, Jingcai Guo, Jiewei Zhang, Yue Zeng, Fushuo Huo","doi":"10.1109/CVPR52729.2023.02285","DOIUrl":null,"url":null,"abstract":"Recent studies usually approach multi-label zeroshot learning (MLZSL) with visual-semantic mapping on spatial-class correlation, which can be computationally costly, and worse still, fails to capture fine-grained classspecific semantics. We observe that different channels may usually have different sensitivities on classes, which can correspond to specific semantics. Such an intrinsic channelclass correlation suggests a potential alternative for the more accurate and class-harmonious feature representations. In this paper, our interest is to fully explore the power of channel-class correlation as the unique base for MLZSL. Specifically, we propose a light yet efficient Multi-Label Multi-Layer Perceptron-based Encoder, dubbed (ML)2P-Encoder, to extract and preserve channel-wise semantics. We reorganize the generated feature maps into several groups, of which each of them can be trained independently with (ML)2P-Encoder. On top of that, a global groupwise attention module is further designed to build the multilabel specific class relationships among different classes, which eventually fulfills a novel Channel-Class Correlation MLZSL framework (C3-MLZSL)11Released code:github.com/simonzmliu/cvpr23_mlzsl. Extensive experiments on large-scale MLZSL benchmarks including NUS-WIDE and Open-Images-V4 demonstrate the superiority of our model against other representative state-of-the-art models.","PeriodicalId":376416,"journal":{"name":"2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)","volume":"44 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"(ML)2P-Encoder: On Exploration of Channel-Class Correlation for Multi-Label Zero-Shot Learning\",\"authors\":\"Ziming Liu, Song Guo, Xiaocheng Lu, Jingcai Guo, Jiewei Zhang, Yue Zeng, Fushuo Huo\",\"doi\":\"10.1109/CVPR52729.2023.02285\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Recent studies usually approach multi-label zeroshot learning (MLZSL) with visual-semantic mapping on spatial-class correlation, which can be computationally costly, and worse still, fails to capture fine-grained classspecific semantics. We observe that different channels may usually have different sensitivities on classes, which can correspond to specific semantics. Such an intrinsic channelclass correlation suggests a potential alternative for the more accurate and class-harmonious feature representations. In this paper, our interest is to fully explore the power of channel-class correlation as the unique base for MLZSL. Specifically, we propose a light yet efficient Multi-Label Multi-Layer Perceptron-based Encoder, dubbed (ML)2P-Encoder, to extract and preserve channel-wise semantics. We reorganize the generated feature maps into several groups, of which each of them can be trained independently with (ML)2P-Encoder. On top of that, a global groupwise attention module is further designed to build the multilabel specific class relationships among different classes, which eventually fulfills a novel Channel-Class Correlation MLZSL framework (C3-MLZSL)11Released code:github.com/simonzmliu/cvpr23_mlzsl. Extensive experiments on large-scale MLZSL benchmarks including NUS-WIDE and Open-Images-V4 demonstrate the superiority of our model against other representative state-of-the-art models.\",\"PeriodicalId\":376416,\"journal\":{\"name\":\"2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)\",\"volume\":\"44 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CVPR52729.2023.02285\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CVPR52729.2023.02285","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
(ML)2P-Encoder: On Exploration of Channel-Class Correlation for Multi-Label Zero-Shot Learning
Recent studies usually approach multi-label zeroshot learning (MLZSL) with visual-semantic mapping on spatial-class correlation, which can be computationally costly, and worse still, fails to capture fine-grained classspecific semantics. We observe that different channels may usually have different sensitivities on classes, which can correspond to specific semantics. Such an intrinsic channelclass correlation suggests a potential alternative for the more accurate and class-harmonious feature representations. In this paper, our interest is to fully explore the power of channel-class correlation as the unique base for MLZSL. Specifically, we propose a light yet efficient Multi-Label Multi-Layer Perceptron-based Encoder, dubbed (ML)2P-Encoder, to extract and preserve channel-wise semantics. We reorganize the generated feature maps into several groups, of which each of them can be trained independently with (ML)2P-Encoder. On top of that, a global groupwise attention module is further designed to build the multilabel specific class relationships among different classes, which eventually fulfills a novel Channel-Class Correlation MLZSL framework (C3-MLZSL)11Released code:github.com/simonzmliu/cvpr23_mlzsl. Extensive experiments on large-scale MLZSL benchmarks including NUS-WIDE and Open-Images-V4 demonstrate the superiority of our model against other representative state-of-the-art models.