一种新的鲁棒性鼻尖检测方法

Jian Liu, Quan Zhang, Chaojing Tang
{"title":"一种新的鲁棒性鼻尖检测方法","authors":"Jian Liu, Quan Zhang, Chaojing Tang","doi":"10.1109/IAEAC.2015.7428566","DOIUrl":null,"url":null,"abstract":"As the most distinct feature point in facial landmarks, nose tip plays a significant role in 3D facial studies. Successful detection of nose tip can facilitate many 3D facial studies tasks. In this paper, we propose a novel method to detect nose tip robustly. The method is robust to noise, need not training, can handle large rotations and occlusions. We first remove small isolated connected regions and noise from the input range image, then establish scale-space by robust smoothing the preprocessed range image. In each scale of the scale-space, we compute multi-angle energy of each point, then we use hierarchical clustering method to cluster the points whose multi-angle energies are larger than a threshold value. In the largest cluster, we can find one point with the largest multi-angle energy. For all scales of the scale-space, we get a series of such points and apply hierarchical clustering again for these points, nose tip will have the largest multi-angle energy in the largest cluster. We evaluate our method in FRGC v2.0 3D face database and BOSPHORUS 3D face database. The experimental results verify the robustness of our method with a high nose tip detection rate.","PeriodicalId":398100,"journal":{"name":"2015 IEEE Advanced Information Technology, Electronic and Automation Control Conference (IAEAC)","volume":"2 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"CoMES: A novel method for robust nose tip detection in face range images\",\"authors\":\"Jian Liu, Quan Zhang, Chaojing Tang\",\"doi\":\"10.1109/IAEAC.2015.7428566\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"As the most distinct feature point in facial landmarks, nose tip plays a significant role in 3D facial studies. Successful detection of nose tip can facilitate many 3D facial studies tasks. In this paper, we propose a novel method to detect nose tip robustly. The method is robust to noise, need not training, can handle large rotations and occlusions. We first remove small isolated connected regions and noise from the input range image, then establish scale-space by robust smoothing the preprocessed range image. In each scale of the scale-space, we compute multi-angle energy of each point, then we use hierarchical clustering method to cluster the points whose multi-angle energies are larger than a threshold value. In the largest cluster, we can find one point with the largest multi-angle energy. For all scales of the scale-space, we get a series of such points and apply hierarchical clustering again for these points, nose tip will have the largest multi-angle energy in the largest cluster. We evaluate our method in FRGC v2.0 3D face database and BOSPHORUS 3D face database. The experimental results verify the robustness of our method with a high nose tip detection rate.\",\"PeriodicalId\":398100,\"journal\":{\"name\":\"2015 IEEE Advanced Information Technology, Electronic and Automation Control Conference (IAEAC)\",\"volume\":\"2 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2015 IEEE Advanced Information Technology, Electronic and Automation Control Conference (IAEAC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IAEAC.2015.7428566\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 IEEE Advanced Information Technology, Electronic and Automation Control Conference (IAEAC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IAEAC.2015.7428566","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

鼻尖作为面部标志中最显著的特征点,在三维人脸研究中占有重要地位。成功的鼻尖检测可以促进许多3D面部研究任务。本文提出了一种新的鼻尖鲁棒检测方法。该方法对噪声具有鲁棒性,不需要训练,可以处理大的旋转和遮挡。首先从输入距离图像中去除小的孤立连接区域和噪声,然后对预处理的距离图像进行鲁棒平滑,建立尺度空间。在尺度空间的每个尺度上,计算每个点的多角度能量,然后使用分层聚类方法对多角度能量大于阈值的点进行聚类。在最大的星团中,我们可以找到一个多角度能量最大的点。对于尺度空间的所有尺度,我们得到一系列这样的点,并对这些点再次进行分层聚类,在最大的聚类中,鼻尖具有最大的多角度能量。在FRGC v2.0 3D人脸数据库和BOSPHORUS 3D人脸数据库中对该方法进行了验证。实验结果验证了该方法的鲁棒性,具有较高的鼻尖检测率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
CoMES: A novel method for robust nose tip detection in face range images
As the most distinct feature point in facial landmarks, nose tip plays a significant role in 3D facial studies. Successful detection of nose tip can facilitate many 3D facial studies tasks. In this paper, we propose a novel method to detect nose tip robustly. The method is robust to noise, need not training, can handle large rotations and occlusions. We first remove small isolated connected regions and noise from the input range image, then establish scale-space by robust smoothing the preprocessed range image. In each scale of the scale-space, we compute multi-angle energy of each point, then we use hierarchical clustering method to cluster the points whose multi-angle energies are larger than a threshold value. In the largest cluster, we can find one point with the largest multi-angle energy. For all scales of the scale-space, we get a series of such points and apply hierarchical clustering again for these points, nose tip will have the largest multi-angle energy in the largest cluster. We evaluate our method in FRGC v2.0 3D face database and BOSPHORUS 3D face database. The experimental results verify the robustness of our method with a high nose tip detection rate.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信