无监督聚类技术的研究

H.S. Lee, N. H. Younan
{"title":"无监督聚类技术的研究","authors":"H.S. Lee, N. H. Younan","doi":"10.1109/SECON.2000.845446","DOIUrl":null,"url":null,"abstract":"The performance of several unsupervised clustering techniques is compared using two clearly separated 3-D data sets that are not separable by any hyperplane. The result shows that the self-organizing feature map can cluster data sets successfully without any prior information of given data while the k-means and the fuzzy k-means algorithm fail to cluster correctly.","PeriodicalId":206022,"journal":{"name":"Proceedings of the IEEE SoutheastCon 2000. 'Preparing for The New Millennium' (Cat. No.00CH37105)","volume":"49 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2000-04-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"An investigation into unsupervised clustering techniques\",\"authors\":\"H.S. Lee, N. H. Younan\",\"doi\":\"10.1109/SECON.2000.845446\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The performance of several unsupervised clustering techniques is compared using two clearly separated 3-D data sets that are not separable by any hyperplane. The result shows that the self-organizing feature map can cluster data sets successfully without any prior information of given data while the k-means and the fuzzy k-means algorithm fail to cluster correctly.\",\"PeriodicalId\":206022,\"journal\":{\"name\":\"Proceedings of the IEEE SoutheastCon 2000. 'Preparing for The New Millennium' (Cat. No.00CH37105)\",\"volume\":\"49 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2000-04-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the IEEE SoutheastCon 2000. 'Preparing for The New Millennium' (Cat. No.00CH37105)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SECON.2000.845446\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the IEEE SoutheastCon 2000. 'Preparing for The New Millennium' (Cat. No.00CH37105)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SECON.2000.845446","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

摘要

使用两个不能被任何超平面分离的清晰分离的三维数据集,比较几种无监督聚类技术的性能。结果表明,自组织特征映射可以在没有给定数据先验信息的情况下成功聚类数据集,而k-means和模糊k-means算法不能正确聚类。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
An investigation into unsupervised clustering techniques
The performance of several unsupervised clustering techniques is compared using two clearly separated 3-D data sets that are not separable by any hyperplane. The result shows that the self-organizing feature map can cluster data sets successfully without any prior information of given data while the k-means and the fuzzy k-means algorithm fail to cluster correctly.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信