{"title":"一种新的自适应方向估计与跟踪子空间更新算法及其统计分析","authors":"J. Xin, Nanning Zheng, A. Sano","doi":"10.1109/SAM.2008.4606850","DOIUrl":null,"url":null,"abstract":"Subspace estimation is of importance to high-resolution direction estimation in array processing. In this paper, a new recursive least-squares (RLS) algorithm is proposed for null space estimation, which is used to estimate or track the directions of coherent and/or incoherent signals impinging on a uniform linear array (ULA). Especially by investigating the expectation computation of an inverse matrix, the statistical analysis of the RLS algorithm is studied in the mean and mean-squares senses in stationary environment, and further the mean-square-error (MSE) and mean-square derivation (MSD) learning curves are derived explicitly. The theoretical analyses and effectiveness of the proposed RLS algorithm are substantiated through numerical examples.","PeriodicalId":422747,"journal":{"name":"2008 5th IEEE Sensor Array and Multichannel Signal Processing Workshop","volume":"56 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2008-07-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"New subspace updating algorithm for adaptive direction estimation and tracking and its statistical analysis\",\"authors\":\"J. Xin, Nanning Zheng, A. Sano\",\"doi\":\"10.1109/SAM.2008.4606850\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Subspace estimation is of importance to high-resolution direction estimation in array processing. In this paper, a new recursive least-squares (RLS) algorithm is proposed for null space estimation, which is used to estimate or track the directions of coherent and/or incoherent signals impinging on a uniform linear array (ULA). Especially by investigating the expectation computation of an inverse matrix, the statistical analysis of the RLS algorithm is studied in the mean and mean-squares senses in stationary environment, and further the mean-square-error (MSE) and mean-square derivation (MSD) learning curves are derived explicitly. The theoretical analyses and effectiveness of the proposed RLS algorithm are substantiated through numerical examples.\",\"PeriodicalId\":422747,\"journal\":{\"name\":\"2008 5th IEEE Sensor Array and Multichannel Signal Processing Workshop\",\"volume\":\"56 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2008-07-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2008 5th IEEE Sensor Array and Multichannel Signal Processing Workshop\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SAM.2008.4606850\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2008 5th IEEE Sensor Array and Multichannel Signal Processing Workshop","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SAM.2008.4606850","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
New subspace updating algorithm for adaptive direction estimation and tracking and its statistical analysis
Subspace estimation is of importance to high-resolution direction estimation in array processing. In this paper, a new recursive least-squares (RLS) algorithm is proposed for null space estimation, which is used to estimate or track the directions of coherent and/or incoherent signals impinging on a uniform linear array (ULA). Especially by investigating the expectation computation of an inverse matrix, the statistical analysis of the RLS algorithm is studied in the mean and mean-squares senses in stationary environment, and further the mean-square-error (MSE) and mean-square derivation (MSD) learning curves are derived explicitly. The theoretical analyses and effectiveness of the proposed RLS algorithm are substantiated through numerical examples.