一种新的自适应方向估计与跟踪子空间更新算法及其统计分析

J. Xin, Nanning Zheng, A. Sano
{"title":"一种新的自适应方向估计与跟踪子空间更新算法及其统计分析","authors":"J. Xin, Nanning Zheng, A. Sano","doi":"10.1109/SAM.2008.4606850","DOIUrl":null,"url":null,"abstract":"Subspace estimation is of importance to high-resolution direction estimation in array processing. In this paper, a new recursive least-squares (RLS) algorithm is proposed for null space estimation, which is used to estimate or track the directions of coherent and/or incoherent signals impinging on a uniform linear array (ULA). Especially by investigating the expectation computation of an inverse matrix, the statistical analysis of the RLS algorithm is studied in the mean and mean-squares senses in stationary environment, and further the mean-square-error (MSE) and mean-square derivation (MSD) learning curves are derived explicitly. The theoretical analyses and effectiveness of the proposed RLS algorithm are substantiated through numerical examples.","PeriodicalId":422747,"journal":{"name":"2008 5th IEEE Sensor Array and Multichannel Signal Processing Workshop","volume":"56 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2008-07-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"New subspace updating algorithm for adaptive direction estimation and tracking and its statistical analysis\",\"authors\":\"J. Xin, Nanning Zheng, A. Sano\",\"doi\":\"10.1109/SAM.2008.4606850\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Subspace estimation is of importance to high-resolution direction estimation in array processing. In this paper, a new recursive least-squares (RLS) algorithm is proposed for null space estimation, which is used to estimate or track the directions of coherent and/or incoherent signals impinging on a uniform linear array (ULA). Especially by investigating the expectation computation of an inverse matrix, the statistical analysis of the RLS algorithm is studied in the mean and mean-squares senses in stationary environment, and further the mean-square-error (MSE) and mean-square derivation (MSD) learning curves are derived explicitly. The theoretical analyses and effectiveness of the proposed RLS algorithm are substantiated through numerical examples.\",\"PeriodicalId\":422747,\"journal\":{\"name\":\"2008 5th IEEE Sensor Array and Multichannel Signal Processing Workshop\",\"volume\":\"56 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2008-07-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2008 5th IEEE Sensor Array and Multichannel Signal Processing Workshop\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SAM.2008.4606850\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2008 5th IEEE Sensor Array and Multichannel Signal Processing Workshop","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SAM.2008.4606850","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

子空间估计是阵列处理中高分辨率方向估计的重要组成部分。本文提出了一种新的递推最小二乘(RLS)零空间估计算法,用于估计或跟踪均匀线性阵列(ULA)上的相干和/或非相干信号的方向。特别是通过研究逆矩阵的期望计算,研究了RLS算法在平稳环境下的均值和均方意义下的统计分析,并推导了均方误差(MSE)和均方导数(MSD)学习曲线。通过数值算例验证了该算法的理论分析和有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
New subspace updating algorithm for adaptive direction estimation and tracking and its statistical analysis
Subspace estimation is of importance to high-resolution direction estimation in array processing. In this paper, a new recursive least-squares (RLS) algorithm is proposed for null space estimation, which is used to estimate or track the directions of coherent and/or incoherent signals impinging on a uniform linear array (ULA). Especially by investigating the expectation computation of an inverse matrix, the statistical analysis of the RLS algorithm is studied in the mean and mean-squares senses in stationary environment, and further the mean-square-error (MSE) and mean-square derivation (MSD) learning curves are derived explicitly. The theoretical analyses and effectiveness of the proposed RLS algorithm are substantiated through numerical examples.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信